
Produced
by

Department of Computing, Maths & Physics

Waterford Institute of Technology
http://www.wit.ie

http://elearning.wit.ie

Introduction to the Java Programming Language

Java Overview

Eamonn de Leastar

edeleastar@wit.ie

mailto:edeleastar@wit.ie

2

3

Essential Java
± Overview

± Introduction
± Syntax
± Basics
± Arrays

± Classes
± Classes Structure
± Static Members
± Commonly used

Classes
± Control Statements

± Control Statement
Types

± If, else, switch
± For, while, do-

while

± Inheritance
± Class hierarchies
± Method lookup in

Java
± Use of this and super
± Constructors and

inheritance
± Abstract classes and

methods
Interfaces

± Collections
± ArrayList
± HashMap
± Iterator
± Vector
± Enumeration
± Hashtable

± Exceptions
± Exception types
± Exception

Hierarchy
± Catching

exceptions
± Throwing

exceptions
± Defining exceptions
Common exceptions

and errors
± Streams

± Stream types
± Character streams
± Byte streams
± Filter streams
± Object Serialization

2

Overview
± Java Introduction

± History
± Portability
± Compiler
± Java Virtual

Machine
± Garbage

collection
± Java Syntax

± Identifiers
± Expressions
± Comments

± Java Basics
± Java types
± Primitives
± Objects
± Variables
± Operators
± Identity and

equality
± Arrays

± What are arrays?
± Creating arrays
± Using arrays

3

Road Map
± Java Introduction

± History
± Portability
± Compiler
± Java Virtual

Machine
± Garbage

collection
± Java Syntax

± Identifiers
± Expressions
± Comments

± Java Basics
± Java types
± Primitives
± Objects
± Variables
± Operators
± Identity and

equality
± Arrays

± What are arrays?
± Creating arrays
± Using arrays

4

Java History

± Originally was called the “Oak”
± Was intended to be used in consumer electronics

± Platform independence was one of the requirements
± Based on C++, with influences from

other OO languages (Smalltalk, Eiffel…)
± Started gaining popularity in 1995

± Renamed to “Java”
± Was good fit for the Internet applications

5

Portability

± Java is platform independent language
± Java code can run on any platform
± Promotes the idea of writing the code on one platform and running

it on any other
± Java also supports native methods

± Native methods are platform specific
± Breaks the idea of platform independence

6

Compiler

± Java source code is stored in .java files
± Compiler compiles code into .class files

± The compiled code is the bytecode that can run on any platform
± Bytecode is what makes Java platform independent

± Bytecode is not a machine code
± The code must be interpreted in the machine code at runtime

7

Java Virtual Machine (JVM)

± Platform specific
± Processes bytecode at the runtime by translating bytecode into

machine code
± This means that Java is interpreted language
± JVM is different for different platforms and bytecode is the same for

different platforms

8

Memory Management

± Automatic garbage collection is built in the language
± No explicit memory management is required
± Occurs whenever memory is required
± Can be forced programmatically
± Garbage collector frees memory from objects that are no longer in

use

9

Distributed Systems

± Java provides low level networking
± TCP/IP support, HTTP and sockets

± Java also provides higher level networking
± Remote Method Invocation (RMI) is Java’s distributed protocol

±Used for communication between objects that reside in different
Virtual Machines

±Commonly used in J2EE (Java 2 Enterprise Edition) Application Server
± CORBA could also be used with Java

10

Concurrency

± Java includes support for multithreaded applications
± API for thread management is part of the language

± Multithreading means that various processes/tasks can run
concurrently in the application

± Multithreaded applications may increase:
± Availability
± Asynchronization
± Parallelism

11

Road Map
± Java Introduction

± Background
± Portability
± Compiler
± Java Virtual

Machine
± Garbage

collection
± Java Syntax

± Identifiers
± Expressions
± Comments

± Java Basics
± Java types
± Primitives
± Objects
± Variables
± Operators
± Identity and

equality
± Arrays

± What are arrays?
± Creating arrays
± Using arrays

12

Identifiers

± Used for naming classes, interfaces, methods, variables,
fields, parameters

± Can contain letters, digits, underscores or dollar-signs
± There are some rules that apply:

± First character in the identifier cannot be a digit
±Can be a letter, underscore or dollar sign

± Literals true, false and null cannot be used
± Reserved words cannot be used

13

Messages and Objects

± Objects send messages to other objects

contact.setName(“Mike”);

message receiver message argument

separator statement ending

14

Expressions

± Statements are the basic Java expressions
± Semicolon (;) indicates end of a statement

HomePolicy homePolicy;
double premium;
premium = 100.00;
homePolicy = new HomePolicy();
homePolicy.setAnnualPremium(premium);

variable declaration

variable assignment

object creation

message sending

15

Empty Expression

± Semicolon on its own in the line
± Can be used to indicate do nothing scenario in the code
!
!
!
!
± We would expect the code to print 0,1,2 but it prints only 0

because of the empty statement

; //this is an empty statement

for(int i=1; i<3; i++) ;
 System.out.println(i);

16

Comments
± 3 different types of comments in Java:

± Single line comment
±Starts with // and ends at the end of the line

± Multiple line comment
±Starts with /* and ends with */

± Javadoc comment
±Starts with /** and ends with */
±Used by Javadoc program for generating Java documentation

/** Javadoc example comment.
 * Used for generation of the documentation.
 */ !
/* Multiple line comment.
 *
 */ !
// Single line comment.

17

Literals

± Represent hardcoded values that do not change
± Typical example are string literals

± When used compiler creates an instance of String class

String one = "One";
String two = "Two";

String one = new String("One");
String two = new String("Two");

18

Road Map
± Java Introduction

± History
± Portability
± Compiler
± Java Virtual

Machine
± Garbage

collection
± Java Syntax

± Identifiers
± Expressions
± Comments

± Java Basics
± Java types
± Primitives
± Objects
± Variables
± Operators
± Identity and

equality
± Arrays

± What are arrays?
± Creating arrays
± Using arrays

19

Java and Types
± There are two different types in Java:

± Primitive data type
± Reference type

± Java is strongly typed language
± Fields, variables, method parameters and returns must have a type

double premium;
HomePolicy homePolicy;

variable type

variable name

20

Primitives

± Primitives represent simple data in Java
± Primitives are not objects in Java

± Messages cannot be sent to primitives
± Messages can be sent to other Java objects that represents

primitives
± These are known as wrapper objects in

Java (such as Double, Integer, and Boolean)

21

Primitive Types

Keyword Size Min value Max value

boolean true/false

byte 8-bit -128 127

short 16-bit -32768 32767

char 16-bit Unicode

int 32-bit -2147483648 2147483647

float 32-bit

double 64-bit

long 64-bit - 9223372036854775808 9223372036854775807

22

Primitives Operators
Keyword Description Keyword Description Keyword Description

+ add < lesser & and

- subtract > greater | or

* multiple = assignment ^ xor

/ divide >= greater equal ! not

% reminder <= less equal && lazy and

(…) the code within is
executed first

== equals || lazy or

++op increment first != not equal << left bit shift

--op decrement first x+=2 x=x+2 >> right bit shift

op++ increment after x-=2 x=x-2 >>> right bit shift with
zeros

op-- decrement after x*=2 x=x*2

23

false && true //false, second operand does not evaluate
true || false //true, second operand does not evaluate

boolean Type

± Commonly used in control
statements

± Consists of two boolean literals:
± true
± false

Keyword Description

! complement

& and

| or

^ exclusive or

&& lazy and

|| lazy or

!true //false
true & true //true
true | false //true
false ^ true //true
true ^ false //true
false ^ false //false
true ^ true //false

24

char Type

± Represents characters in Java
± Uses 16-bit unicode for support of internationalization
± Character literals appear in single quotes, and include:

± Typed characters, e.g. 'z'
± Unicode, e.g. '\u0040', equal to '@'
± Escape sequence, e.g. '\n'

25

Escape Sequence Characters

Escape sequence Unicode Description

\n \u000A New line
\t \u0009 Tab
\b \u0008 Backspace
\r \u000D Return
\f \u000C Form feed
\\ \u005C Backslash
\’ \u0027 Single quote
\” \u0022 Double quote

± Commonly used with print statements

26

Numeric Types

± There are generally two different types:
± Integer: byte, short, int, and long
± Floating-point: float, and double

± Literals can be used for all but byte and short types
± An int is converted to byte if it fits to 8-bits
± An int is converted to short if it fits to 16-bits

12 //decimal integer 12
12L //long decimal 12
0x1E //hexadecimal integer 30
23.f //float
30.7 //double

27

Manipulating Numeric Types

± A lesser type is promoted to greater type and than
operation is performed

!
± A greater type cannot be promoted to lesser type

± Assigning double value to int type variable would result in compile
error

12 + 24.56 //int + double = double

int i = 12;
double d = 23.4;
i = d; Type mismatch

28

Type Casting

± Values of greater precision cannot be assigned to variables
declared as of lower precision types

± Type casting makes primitives to change their type
± Used to assign values of greater precision to variables declared as

lower precision
±e.g. it’s possible to type cast double to int type

int i = 34.5; //compiler error - type mismatch
int i = (int)34.5; //explicit type casting

29

Reference Types…

± Reference types in Java are class or interface
± They are also known as object types

± If a variable is declared as a type of class
± An instance of that class can be assigned to it
± An instance of any subclass of that class can be assigned to it

± If a variable is declared as a type of interface
± An instance of any class that implements the interface can be

assigned to it

30

…Reference Type

± Reference type names are uniquely identified by:
± Name of the package where type is defined (class or interface)
± Type name

java.lang.Object
pim.Contact

31

Object Operators

Keyword Description

instanceof object type

!= not identical

== identical

= assignment

32

Creating Objects in Java

± Objects are, in Java, created by using constructors
± Constructors are methods that have same name as the

class
± They may accept arguments mainly used for fields initialization
± If constructor is not defined, the default constructor is used

HomePolicy firstPolicy = new HomePolicy();
HomePolicy secondPolicy = new HomePolicy(1200);

33

Assignment

±Assigning an object to a variable binds the
variable to the object

HomePolicy firstPolicy =
 new HomePolicy(1200);

HomePolicy firstPolicy =
 new HomePolicy(1200);
HomePolicy secondPolicy =
 new HomePolicy(1200);
firstPolicy = secondPolicy;

1200
aHomePolicy

1200
aHomePolicy

1200
aHomePolicy

1200
aHomePolicy

34

Identical Objects…

± Operand == is used for checking if two objects are
identical
± Objects are identical if they occupy same memory space

int x = 3;
int y = 3;
x == y; //true

HomePolicy firstPolicy =
 new HomePolicy(1200);
HomePolicy secondPolicy =
 new HomePolicy(1200);
firstPolicy == secondPolicy; //false

3

1200
aHomePolicy

1200
aHomePolicy

35

…Identical Objects
± Variables that reference objects are compared by value

± Objects are identical if their memory addresses are the same
± Variables are identical if they refer to exactly same instance of

the class

HomePolicy firstPolicy = new HomePolicy(1200);
HomePolicy secondPolicy = firstPolicy;
firstPolicy == secondPolicy; //true

1200
aHomePolicy

36

Equal Objects

± Determined by implementation of the equals() method
± Default implementation is in the Object class and uses == (identity)
± Usually overridden in subclasses to provide criteria for equality

HomePolicy firstPolicy =
 new HomePolicy(1200,1);
HomePolicy secondPolicy =
 new HomePolicy(1200,1);
firstPolicy.equals(secondPolicy);

37

null

± Used to un-assign object from a variable
± Object is automatically garbage collected if it does not have

references
± When a variable of object type is declared it is assigned

null as a value
String one = "One";
one = null;
one = "1";

HomePolicy policy;
policy = new HomePolicy(1200);
…
if (policy != null)
{
 System.out.println(policy.toString());
}

38

Road Map

± Arrays
± What are arrays?
± Creating arrays
± Using arrays

39

What is an Array?

± Arrays are basic collections in Java
± They contain elements of the same type
± Elements can either be Java objects or primitives

± Arrays are fixed-size sequential collection
± Size is predefined, and arrays cannot grow

± Arrays are objects

40

Array Basics

± The first element in array is at the zero index
!
!
!
± Arrays are automatically bounds-checked

± When accessing elements that are out of bounds, an exception will
be thrown

± For example, accessing element at index 6 in the above example
will throw the exception

0 51 2 3 4

41

Creating Arrays…

± Arrays store objects of specific type
± One array cannot store objects of different types, String and int for

example
± To define a variable that holds an array, you suffix the type

with square brackets []
± This indicates that variable references an array

int[] arrayOfIntegers;
String[] arrayOfStrings;

42

…Creating Arrays…

± Alternative ways to define an array include:
± Suffixing variable name with brackets

int arrayOfIntegers[];
String arrayOfStrings[];

43

…Creating Arrays

± There are two ways to create an array:
± Explicitly using the keyword new
± Using array initializer

± When creating an array explicitly its size must be specified
± This indicates desired number of elements in the array
± Elements in the array are initialized to default values

int arrayOfIntegers[];
arrayOfIntegers = new int[5];

44

Array Initializer

± Used for creating and initializing arrays
± Array elements are initialized within the curly brackets
!
!

± Can only be used when declaring variable
± Using array initializer in a separate step will result in a compilation

error

int[] arrayOfIntegers = {1,2,3,4,5};

int[] arrayOfIntegers;
arrayOfIntegers = {1,2,3,4,5};

45

Initializing Arrays

± If not using initializer, an array can be initialized by storing
elements at proper index

int[] arrayOfIntegers;
arrayOfIntegers = new int[5];
arrayOfIntegers[0] = 1;
arrayOfIntegers[1] = 2;
arrayOfIntegers[2] = 3;
arrayOfIntegers[3] = 4;
arrayOfIntegers[4] = 5;

46

Manipulating Arrays

± An element of the array is accessed by accessing index at
which element is stored

!
!
!
± An array size can be obtained by asking for its length

± Used commonly in control statements (loops)

int[] arrayOfIntegers = {1,2,3,4,5};
System.out.println(arrayOfIntegers[2]);

3

Console

int[] arrayOfIntegers = {1,2,3,4,5};
System.out.println(arrayOfIntegers.length);

5

Console

47

Multi-Dimensional Arrays

± An array can contain elements of other arrays
± Such an array is known as multi-dimensional array
± There is no limit is number of dimensions

±Arrays can be 2-dimensional, 3-dimensional, and n-dimensional

int[][] arrayOfIntegers = new int[2][5];

48

Manipulating Multi-Dimensional Arrays

±Multi-dimensional arrays are created like any other
arrays
±Using the keyword new
±Using array initializers
!

±Elements in multi-dimensional array are also
accessed using their indices

int[][] arrayOfIntegers = {{1,2,3,4,5},{6,7,8,9,10}};

int[][] arrayOfIntegers = {{1,2,3,4,5},{6,7,8,9,10}};
System.out.println(arrayOfIntegers[1][2]);

8

49

Summary
± Java Introduction

± Background
± Portability
± Compiler
± Java Virtual

Machine
± Garbage

collection
± Java Syntax

± Identifiers
± Expressions
± Comments

± Java Basics
± Java types
± Primitives
± Objects
± Variables
± Operators
± Identity and

equality
± Arrays

± What are arrays?
± Creating arrays
± Using arrays

Except where otherwise noted, this content is
licensed under a Creative Commons
Attribution-NonCommercial 3.0 License.
!
For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

