
Produced
by

Department of Computing, Maths & Physics
Waterford Institute of Technology
http://www.wit.ie

http://elearning.wit.ie

Introduction to the Java Programming Language

Java Classes

Eamonn de Leastar
edeleastar@wit.ie

http://www.wit.ie
http://www.wit.ie
http://www.wit.ie
http://www.wit.ie
mailto:edeleastar@wit.ie
mailto:edeleastar@wit.ie

3

Essential Java
± Overview

± Introduction
± Syntax
± Basics
± Arrays

± Classes
± Classes Structure
± Static Members
± Commonly used

Classes
± Control Statements

± Control Statement
Types

± If, else, switch
± For, while, do-

while

± Inheritance
± Class hierarchies
± Method lookup in

Java
± Use of this and super
± Constructors and

inheritance
± Abstract classes and

methods
Interfaces

± Collections
± ArrayList
± HashMap
± Iterator
± Vector
± Enumeration
± Hashtable

± Exceptions
± Exception types
± Exception

Hierarchy
± Catching

exceptions
± Throwing

exceptions
± Defining exceptions
Common exceptions

and errors
± Streams

± Stream types
± Character streams
± Byte streams
± Filter streams
± Object Serialization

2

Overview
± Classes in Java

± What are classes?
± Defining classes
± .java files
± Packages and access level
± .jar files and classpath
± Fields, methods, and constructors

± Static fields and methods
± Defining and using static fields
± Defining and using static methods

± Commonly used classes in Java
± Object class
± String and String Buffer classes
± Class and System classes

3

Road Map
± Classes in Java

± What are classes?
± Defining classes
± .java files
± Packages and access level
± .jar files and classpath
± Fields, methods, and constructors

± Static fields and methods
± Defining and using static fields
± Defining and using static methods

± Commonly used classes in Java
± Object class
± String and String Buffer classes
± Class and System classes

4

How to Define Java Class?

± Java class is defined with using class keyword
± Class name follows the keyword, and by convention starts with

capital letter
±For example Policy, Client, House, etc.

± Class access level must be specified before the class
keyword

public class Policy
{
 …
}

5

Class Modifiers

± Class Modifiers identifies visibility of the class
± There are two access modifiers for a class:

± public
± Identifies that any other class can reference defined class

± Not specified
± Identifies that only classes defined in the same package can reference

defined class
± It is default access level modifier

6

.java Files

± Java classes are contained in .java files
± One file can contain one public class
± One file can contain more than one non-public classes

± The file name is the same as the class name contained in
the file

package org.tssg.demo.models;

public class Policy
{
 …
}

Policy.java

7

Package
± Package groups related classes

± Classes are usually related by their functionality, for example domain
classes, testing classes, etc.

± Package is identified using package keyword
± Package is unique identifier for a class

± Two classes with a same name cannot be in the same package
± Different packages can contain same class names

package org.tssg.pim;

8

Referencing Classes

± A class must be fully referenced every time when used
outside of its package

± Full qualifier for a class is used
± package name + class name

package org.tssg.demo.tests;

public class PolicyTester
{
 org.tssg.demo.models.Policy policy;
 …
 policy = new org.tssg.demo.models.Policy();
}

9

Import Statement

± Used to identify which classes can be referenced without
fully identifying them
± Specified with import keyword
± Can specify a class, or all classes from a package

package org.tssg.demo.tests;
import org.tssg.models.Policy;

public class PolicyTester
{
 Policy policy;
 …
 policy = new Policy();
}

10

Compiling Classes
± When writing Java class, the source code is stored in .java

files
± When compiling Java classes, compiled code is stored

in .class files
± Compiled Java classes from the same package are

compiled into the same directory
± The directory name matched package name

11

Classpath and .jar files

± Classpath allows Java Virtual Machine to find the code
± CLASSPATH environment variable is used to indicate the root of

where packages are
±Packages are subdirectories under the root

± Compiled Java classes can be packaged and distributed
in Java Archive (.jar) files
± Packages in the .jar file are replaced with directories

12

What are Fields?

± Object state is implemented through fields
± Fields are defined at the class level

± All instances of the same class have the same fields
± Fields values can be different from instance to instance

Policy
client
premium
policyNumber

13

Defining Fields

± A field definition consists of:

± Access modifier
± Field type
± Field name

package org.tssg.demo.models;

public class Policy
{
 private Client client;
 private String policyNumber;
 private double premium;
}

14

Initializing Fields

± Fields are initialized when new instance of a class is
created

± Primitive type fields get a default value
± Numeric primitives are initialized to 0 or 0.0
± boolean primitives are initialized to false
± Reference type fields are initialized to null as they do not yet

reference any object
± Fields can also be explicitly initialized when declared

15

Initializing Fields Explicitly

± Possible when declaring fields
± Constructors are generally used for initializing fields

package org.tssg.demo.models;

public class Policy {
 private Client client = new Client();
 private String policyNumber = "PN123";
 private double premium = 1200.00;
}

16

Field Access Modifier

± There are four different modifiers:
± public

±Allows direct access to fields from outside the package where class
is defined

± protected
±Allows direct access to fields from within the package where class is

defined
± default

±Allows direct access to fields from within the package where class is
defined and all subclasses of the class

± private
±Allows direct access to fields from class only

17

Methods

± Methods represent behavior of an object
± All instances of the same class have same methods defined and

understand same messages
± When a message is sent to an object, method that

corresponds to that message is executed
± Methods represent implementation of messages

18

getters()/setters()

± To allow access to private fields, getter
and setter methods are commonly
used
± Getters return fields values
± Setters set fields values to passed

parameters

Policy
client
premium
policyNumber
getClient
getPremium
getPolicyNumber
setClient
setPremium
setPolicyNumber

19

Defining Methods

± Methods are defined with:
± Access modifier, same as for fields
± Return type
± Method name
± Parameters, identified with type and name

package org.tssg.demo.models;

public class Policy
{
 …
 public void setClient(Client aClient)
 {
 …
 }
}

20

Constructors

± Special methods used for creating instances of a class:
± access modifier
± same name as the class
± manipulate new instance

package org.tssg.demo.models;

public class Policy
{
 …
 public Policy()
 {
 setClient(new Client());
 setPolicyNumber("PN123");
 setPremium(1200.00);
 }
}

21

Using Constructors

± Use new before class name to create an instance of a
class

package org.tssg.demo.models;

public class Policy
{
 …
 public Policy(Client aClient, String policyNumber, double premium)
 {
 setClient(aClient);
 setPolicyNumber(policyNumber);
 setPremium(premium);
 }
}

Policy policy = new Policy(new Client(), "PN123", 1200.00);

22

Policy Class Implementation
package org.tssg.demo.models;

public class Policy
{
 private Client client;
 private String policyNumber;
 private double premium;

 public Policy(Client aClient, String policyNumber, double premium)
 {
 setClient(aClient);
 setPolicyNumber(policyNumber);
 setPremium(premium);
 }

 public Client getClient()
 {
 return client;
 }

 public void setClient(Client aClient)
 {
 this.client = aClient;
 }
 //… other getters and setters..
}

23

Road Map
± Classes in Java

± What are classes?
± Defining classes
± .java files
± Packages and access level
± .jar files and classpath
± Fields, methods, and constructors

± Static fields and methods
± Defining and using static fields
± Defining and using static methods

± Commonly used classes in Java
± Object class
± String and String Buffer classes
± Class and System classes

24

What are Static Fields?

± Static fields represent data shared across all instances of a
class
± There is only one copy of the field for the class
± Modification to the static field affects all instances of the class

± Static fields are also knows as class variables
± Some of the static fields usages include:

± Constants
± Implementation of singleton pattern

25

Declaring Static Fields

± Declared by using the static keyword
± Java constants are declared as static final fields

± Modifier final indicates that field value cannot be changed

public class Count
{
 public static String INFO = "Sample Count Class";
 public final static int ONE = 1;
 public final static int TWO = 2;
 public final static int THREE = 3;
}

26

Accessing Static Fields

± Static field can be accessed:
± Directly

± Indirectly

System.out.println(Count.ONE);

Count count = new Count();
System.out.println(count.INFO);

1
Console

Sample Count Class
Console

27

Static Methods

± Define behavior related to the class, not individual
instances
± Defined by using the static keyword
± Commonly used for accessing static fields

±Getter and setter methods
public class Count
{
 private static String INFO = "Sample Count Class";
 public final static int ONE = 1;
 public final static int TWO = 2;
 public final static int THREE = 3;
 public static String getInfo()
 {
 return INFO;
 }
}

28

Using Static Methods

±Static methods can be also accessed by instance
or class

Count count = new Count();
System.out.println(count.getInfo());

Sample Count Class
Console

System.out.println(Count.getInfo());
Sample Count Class

Console

29

Road Map
± Classes in Java

± What are classes?
± Defining classes
± .java files
± Packages and access level
± .jar files and classpath
± Fields, methods, and constructors

± Static fields and methods
± Defining and using static fields
± Defining and using static methods

± Commonly used classes in Java
± Object class
± String and String Buffer classes
± Class and System classes

30

Package java.lang

± It is a core package in Java
± When classes from this package are referenced there is no

need for import statement
± Contains core set of classes such as:

± Object
± String
± StringBuffer
± System
± Class

31

Object Class

± Object class is the top of the class hierarchy in Java
± Every class inherits from Object class
± Defines some default behavior that is mainly overridden in

subclasses
± Commonly overridden methods from Object class are:

± toString()
± equals()
± hashCode()
± clone()

32

Method equals()

± Meant to return whether or not two objects are equal
± Default implementation in Object class returns whether or not are

objects identical
±The == operator is used

± Overriding method allows to change the equality criteria
±For example two policies are the same if they have the same client,

same policyNumber and same premium

33

Example equals() method
± An example of overriding the equals() method in the Policy

class
± Two policies are equal if their policy numbers are equal

public boolean equals(Object anObject)
{
 if (other == this)
 {
 return true;
 }
 if (other == null)
 {
 return false;
 }
 if (getClass() != other.getClass())
 {
 return false;
 }
 Policy policy = (Policy)anObject;
 return getPolicyNumber().equals(policy.getPolicyNumber());
}

34

Method hashCode()

± Used by collections, primarily HashMap and HashSet
± Returns an int for indexing
± Hash codes must be identical for objects that are equal
± For the Policy class implementation of the hash code method

could be:

public int hashCode()
{
 return getPolicyNumber().hashCode();
}

35

String Class

± Used for manipulating constant set of characters
± Literals are String instances that cannot be changed, and

have fixed size

String greeting = "Hello" + ", do you like my hat?";
 //"Hello, do you like my hat?"
String hello = greeting.substring(0,5); //"Hello"
String upercase = hello.toUpperCase(); //"HELLO THERE!"
boolean isEqual = hello.equals("HELLO"); //false
boolean isEqual1 = hello.equalsIgnoreCase("HELLO"); //true

36

StringBuffer Class

± Used for strings that can change
± Allows for adding, replacing and deleting characters

± When characters are added size increases
± StringBuffer object knows about its length and capacity

± length indicates how many characters it has
±capacity indicates how many characters it can currently hold

37

Using StringBuffer Class

StringBuffer buffer = new StringBuffer();
buffer.append("Hello");
buffer.append(", do you");
buffer.insert(13, " like my hat?");
System.out.println(buffer);
buffer.replace(0,5,"Hi");
System.out.println(buffer);
buffer.delete(2,buffer.length()-1);
buffer.replace(buffer.length()-1,

 buffer.length(),
"!");

System.out.println(buffer);

Hello, do you like my hat?

Console

Hi, do you like my hat?

±Typical buffer manipulation includes appending,
replacing, inserting and deleting characters

Hi!

38

System Class

±Provides an access to system functions through
its static protocols
±It is not possible to create instances of System class
±Defines static methods and fields

System.out.println("Hello, do you like my hat?");

Hello, do you like my hat?

Console

39

Summary
± Classes in Java

± What are classes?
± Defining classes
± .java files
± Packages and access level
± .jar files and classpath
± Fields, methods, and constructors

± Static fields and methods
± Defining and using static fields
± Defining and using static methods
± Singleton pattern

± Commonly used classes in Java
± Object class
± String and String Buffer classes
± Class and System classes

Except where otherwise noted, this content is
licensed under a Creative Commons
Attribution-NonCommercial 3.0 License.

For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/

