
Produced 
by

Department of Computing, Maths & Physics
Waterford Institute of Technology

http://www.wit.ie

http://elearning.wit.ie

Introduction to the Java Programming Language

Object Oriented Concepts

Eamonn de Leastar
edeleastar@wit.ie

http://www.wit.ie
http://www.wit.ie
http://www.wit.ie
http://www.wit.ie
mailto:edeleastar@wit.ie
mailto:edeleastar@wit.ie


2

Object-Oriented Software

• Developing object-oriented software is identifying:

• Objects

• Characteristics of individual objects

• Relationships between objects

• Objects interact by sending messages to each other

• Interacting objects make an object-oriented system



3

Object-Oriented Terms

• Objects

• Classes, instances, fields and methods

• Encapsulation

• Polymorphism

• Inheritance

• Dynamic binding



4

Objects

• Every object has:

• State

• Behavior

• State represents data - what an object knows, or what an object contains

• Behavior represents what an object can do



5

Objects and Loose Coupling

• Changing an object’s data does not lead 
to changes in an object’s external 
behavior

• An object’s external interface stays the 
same

• Promotes loose coupling between 
objects

state

behavior

object1
state

behavior

object2

state

behavior

object3



6

• Person object

• State: age, name, children

• Behavior: addChild, getAge, setAge

Object State and Behavior

state

behavior

aPerson

age
name

children

getAge
setAge

addChild
…



7

Interactions between Objects
• Object interact by sending messages to each other

• Objects and interactions between them make up an object-oriented system

aPolicyFactory:

createPolicy

aBroker: aPerson:

aPolicy:
aPolicy

new(“Joe Smith”, “35 years”)

aPerson

setOwner(aPerson)

…



8

Messages
• There are two major terms in messaging:

• Message sender

• Message receiver

• Messages may have arguments

getAge()sender
receiver

message

aBroker: aPerson:



9

Methods

• Method is concrete implementation of a message

• When message is sent to a receiver:

• Method is found by type of the receiver object and method signature

• Method code is executed

• Method represents an object’s response to a message



10

Method Signature

• Method signature is unique identifier of the method

• It is used to distinguish methods with same name and same number of 
parameters

• It consists of:

• Method name

• Parameter name

• Parameter type



11

Object’s Public Protocol

• Public protocol is set of messages that can be sent to an object

• It does not include messages that an object can send to itself

• These are private

aPerson
age

name
children

getAge
setAge

addChild

…
public protocol



12

Fields

• Fields represent characteristics of an object

• Fields are also known as attributes, or instance variables

fields

aPerson

age
name

children

getAge
setAge

addChild

…



13

Object-Oriented Principle: Encapsulation

• Objects hide implementation of the messages behind their public protocols

• Object’s internal implementation is accessed by that object only

• Encapsulation is also known as implementation hiding

getName()

aBroker: aPerson:

getAge()
Joe Smith

35



14

Classes
• Classes are:

• Factories for creating objects

• Template for the same kind of objects that 
describes their state and behavior

• Code repository for objects

• Classes define objects (by defining their state and 
behavior) and their type

aPerson

age
name

children

getAge
setAge

addChild

…



15

Instances

• Every object is an instance of some class

• All instances of same class have the same protocol

• They have same fields and same methods that are defined by the class

John Smith
35

John Smith

Jimmy, Chloe

Jim Smith
60

Jim Smith

John, Tom

class

classPerson
age

name
children
address
getAge
setAge

addChild
…



16

Object-Oriented Principle: Inheritance

• Some classes may share commonalities

• For example HomePolicy, AutoPolicy, LifePolicy classes may all 
have same state and behavior

• Instead of repeating commonalities in each class, we can abstract them in a 
common place

• These commonalities can be stored in a super class

• Each subclass inherits state and behavior from its superclass



17

Specialization and Generalization
Policy
client

premium
policyNumber

getClient
setClient

…

HomePolicy
house

getHouse
setHouse

AutoPolicy
auto

getAuto
setAuto

LifePolicy

ge
ne

ra
liz

at
io

n
specialization



18

Why Inheritance?

• Inheritance represents real-world modeling

• Some objects are special cases of other objects

• Inheritance promotes reuse and extensibility

• Same data and behavior is shared among objects of different types 
(different class)

• New data and new behavior that is common for those objects is easier to 
add 



19

Object-Oriented Principle: Polymorphism

• Polymorphism

• different objects respond to the same message in different ways

• For example when asked to talk a dog barks, and a cat meows

• It is often supported by method overriding

• Overriding means that subclass may implement the same method as 
superclass, but with different code

• toString() method in the Object class is an example of often 
overridden method



20

Overriding Example

• Consider Animal class:

• Dog and Cat as subclasses

• All Animal objects should know how to talk

aCat.talk();

aDog.talk();

meows

barks

Animal

talk()

Dog

talk()

Cat

talk()



21

Dynamic Binding

• Dynamic binding represents runtime method binding

• It is runtime binding of method invoked in the message to the method that 
implements that message

• For example:::

anAnimal.talk();

aDog

…
talk

aCat

…
talk



Except where otherwise noted, this content is 
licensed under a Creative Commons Attribution-
NonCommercial 3.0 License. 

For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/

