
Produced
by

Department of Computing, Maths & Physics

Waterford Institute of Technology

http://

http://

Agile Software Development

Eamonn de Leastar (edeleastar@wit.ie)

mailto:edleastar@wit.ie

Inheritance in Java

3

Java Essentials
± Overview

± Introduction
± Syntax
± Basics
± Arrays

± Classes
± Classes Structure
± Static Members
± Commonly used

Classes
± Control Statements

± Control Statement
Types

± If, else, switch
± For, while, do-

while

± Inheritance
± Class hierarchies
± Method lookup in

Java
± Use of this and super
± Constructors and

inheritance
± Abstract classes and

methods
Interfaces

± Collections
± ArrayList
± HashMap
± Iterator
± Vector
± Enumeration
± Hashtable

± Exceptions
± Exception types
± Exception

Hierarchy
± Catching

exceptions
± Throwing

exceptions
± Defining exceptions
Common exceptions

and errors
± Streams

± Stream types
± Character streams
± Byte streams
± Filter streams
± Object Serialization

2

Overview

± What is inheritance?

± Implementation Inheritance

±Method lookup in Java

±Use of this and super

±Constructors and inheritance

±Abstract classes and methods

± Interface Inheritance

±Definition

±Implementation

±Type casting

±Naming Conventions

3

What is Inheritance?
± Inheritance is one of the primary object-oriented

principles.

± It is a mechanism for sharing commonalities between

classes

± Two types of Inheritance:

1. Implementation Inheritance

± It promotes reuse

± Commonalities are stored in a parent class - called the

superclass

± Commonalities are shared between children classes - called the

subclasses

2. Interface Inheritance

± Mechanism for introducing Types into java design

± Classes can support more than one interface, i.e. be of more

than one type

4

Implementation Inheritance
Policy

client
premium
policyNumber
getClient
setClient
…

HomePolicy
house

getHouse
setHouse

AutoPolicy
auto

getAuto
setAuto

LifePolicy

ge
ne

ra
liz

at
io

n
specialization

5

Defining Inheritance

± In Java, inheritance is supported by using keyword
extends

± It is said that subclass extends superclass

± If class definition does not specify explicit superclass, its

superclass is Object class

public class Policy {…
public class HomePolicy extends Policy{…
public class AutoPolicy extends Policy{…
public class LifePolicy extends Policy{…

public class Policy{… public class Policy extends Object{…

6

Variables and Inheritance

± Variables can be declared against the base class, and
assigned objects of more derived classes

± E.g. Variable declared as of type Policy can be assigned
an instance of any Policy’s subclasses

Policy policy;
policy = new Policy();

Policy policy;
policy = new HomePolicy();

Policy policy;
policy = new AutoPolicy();

Policy policy;
policy = new LifePolicy();

7

Multiple Inheritance

± Not supported in Java

± A class cannot extend more than one class

± There is only one direct superclass for any class

± Object class is exception as it does not have superclass

8

What is Inherited?

± In general all subclasses inherit from superclass:

± Data

± Behavior

± When we map these to Java it means that subclasses
inherit:

± Fields (instance variables)

± Methods

9

Inheriting Fields

± All fields from superclasses are inherited by a subclass

± Inheritance goes all the way up the hierarchy

Policy

HomePolicy

client
premium
policyNumber

client
premium
policyNumber

house
client
premium
policyNumber
house

10

Inheriting Methods
± All methods from superclasses are inherited by a

subclass

± Inheritance goes all the way up the hierarchy

getClient
setClient
getPremium
setPremium
getPolicyNumber
setPolicyNumber

getHouse
setHouse

getClient
setClient
getPremium
setPremium
getPolicyNumber
setPolicyNumber
getClient
setClient
getPremium
setPremium
getPolicyNumber
setPolicyNumber
getHouse
setHouse

Policy

HomePolicy

11

± Method lookup
begins in the class
of that object that
receives a
message

!
!

± If method is not
found lookup
continues in the
superclass

HomePolicy

getHouse
setHouse

house

Method Lookup
…
HomePolicy homePolicy = new HomePolicy();
…
homePolicy.getPremium();

HomePolicy class – method not found

Policy

getPremium
setPremium

premium
Policy class – method found

12

this vs. super

± They are both names of the receiver object

± The difference is where the method lookup begins:

± this

±Lookup begins in the receiver object’s class

± super

±Lookup begins in the superclass of the class where the method is

defined

13

Exampl
e

class Policy
{
//…
 public void print()
 {
 System.out.println("A " + getClass().getName() + ", $" + getPremium());
 }
//..
}

class HomePolicy extends Policy
{
//…
 public void print()
 {
 super.print();
 System.out.println("for house " + getHouse().toString();
 }
//…
}

Policy p = new Policy();
p.print();

HomePolicy h = new HomePolicy();
h.print();

Policy

HomePolicy

A Policy, $1,200.00

A HomePolicy, $1,200.00
for house 200 Great Street

14

Method Overriding
± If a class defines the same method as its superclass, it is

said that the method is overridden

± Method signatures must match

Policy

HomePolicy
//Method in the Policy class
public void print()
{
 System.out.println("A " + getClass().getName() + ", $" + getPremium());
}

//Overridden method in the HomePolicy class
public void print()
{
 super.print();
 System.out.println("for house " + getHouse().toString();
}

15

Overriding Constructors

± Similar to overriding methods, applying rules specific to
constructors:

± First line in the constructor must be either
this(parameters) or super(parameters)

± This eventually leads to the Object class constructor that

creates the object

± If the call is not coded explicitly then an implicit zero-argument

super() is called

± If the superclass does not have a zero-argument constructor,

this causes an error

16

Example of Overriding Constructors
public Policy(double premium, Client aClient, String policyNumber)
{
 this.premium = premium;
 this.policyNumber = policyNumber;
 this.client = aClient;
}

public HomePolicy(double premium,
 Client aClient,
 String policyNumber,
 House aHouse)
{
 super(premium, aClient, policyNumber);
 this.house = aHouse;
}

Policy

HomePolicy

17

Abstract Classes

± Classes that cannot have instances

± They are designed to hold inherited fields and methods for

subclasses

± They also define what subclasses should implement

± Details are left for concrete implementation in subclasses

± Usually specified at the design level

18

Defining Abstract Classes

± Modifier abstract is used to indicate abstract class

public abstract class Policy {…

Policy

HomePolicy AutoPolicy LifePolicy

19

Abstract Methods

± Can only be defined in abstract classes

± Abstract classes can contain concrete methods as well

± Declaration of abstract method in concrete class will result in

compile error

± Declare method signatures

± Implementation is left to the subclasess

± Each subclass must have concrete implementation of the

abstract method

± Used to impose method implementation on subclasses

20

Defining Abstract Methods…
± Modifier abstract is also used to indicate abstract method

public abstract class Policy
{
 public abstract void calculateFullPremium();
}

Policy
calculateFullPremium

HomePolicy AutoPolicy LifePolicy

21

…Defining Abstract Methods
± All subclasses must implement all abstract methods
public class HomePolicy extends Policy
{
 //…
 public void calculateFullPremium()
 {
 //calculation may depend on a criteria about the house
 }
}

public class AutoPolicy extends Policy
{
 //…
 public void calculateFullPremium()
 {
 //calculation may depend on a criteria about the auto
 }
}

public class LifePolicy extends Policy
{
 //…
 public void calculateFullPremium()
 {
 //calculation may depend on a criteria about the client
 }
}

22

Interface Inheritance

± Interfaces define a set of methods but do not provide
implementation of those methods

± Similar in principle to an abstract class all of whose
methods are abstract.

± Classes that implement interfaces must provide
implementation methods as specified in the Interface
definition

± Interfaces are said to specify Types

± Classes can implement one or more Interfaces as

appropriate i.e. have more than one type.

23

Interfaces Define Types

± Interfaces define Types

± They define common protocol

± Can be used to promote design to a higher level of abstraction

± Can be used where multiple implementations of one abstraction

are envisaged

± Interfaces are used to impose typing

± If a variable is declared as of an interface type, than an instance
of any class that implements that interface can be assigned to
that variable

24

Defining Interface

± Similar to defining
classes

± Keyword interface used

instead of class keyword

± Defined methods contain

signatures only

± Interfaces are also stored

in .java files

public interface IAddressBook 
{ 
 void clear(); 
 
 IContact getContact(String lastName); 
 
 void addContact(IContact contact); 
 
 int numberOfContacts(); 
 
 void removeContact(String lastName); 
 
 String listContacts(); 
}

25

Implementing Interfaces

± Classes
implement
interfaces

± Keyword

implements is
used

± They must define
all methods that
interface they
implement
declares

public class AddressBook implements IAddressBook 
{ 
 private static int MAXCONTACTS = 1000; 
 private Contact[] contacts; 
 private int nmrContacts; 
 
 public AddressBook() 
 { 
 contacts = new Contact[MAXCONTACTS]; 
 nmrContacts = 0; 
 } 
 
 private int locateIndex(String lastName)
 {
 //…
 }
 public void clear() 
 { 
 //…
 } 
 //... 

26

Rules

± Interfaces can contain:

± Only method signatures

± Only final static fields

± Interfaces cannot contain:

± Any fields other than final static fields

± Any static methods

± Any method implementation

± Any constructors

27

Reference vs Interface type

± Variable can be
declared as:

± Reference type

± Any instance of

that class or any of
the subclasses can
be assigned to the
variable

± Interface type

± Any instance of

any class that
implements that
interface can be
assigned to the
variable

IAddressBook book; !
book = new AddressBook();
book.clear();
book.addContact(contact);
//… etc… !!
book = new AddressBookMap();
book.clear();
book.addContact(contact);
//… etc..

book declared as IAddressBook interface type

28

Variables and Messages

± If variable is
defined as a
certain type, only
messages defined
for that type can
be sent to the
variable

IAddressBook book;
!
book = new AddressBook();
!
book.clear();
book.addContact(contact);
!
int i = book.locateIndex(“mike”);
!
// Error – locateIndex() is defined in
// AddressBook – but not in
// IAddressBook

29

Type Casting
± Type casting can be subverted by type checking.

± To be used rarely and with care.

± Type cast can fail, and run time error will be generated if

the book object really is not an AddressBook

 (e.g it could be an AddressBookMap which also implements

IAddressBook)
IAddressBook book;
!
book = new AddressBook();
!
book.clear();
book.addContact(contact);
!
int i = ((AddressBook)book).locateIndex(“mike”);

Type cast from IAddressBook to AddressBook

30

Interfaces can be Inherited

± It is possible that one interface extends other interfaces

± Sometimes known as “subtyping”

± Multiple inheritance is allowed with interfaces

± Inheritance works the same as with classes

± All methods defined are inherited

31

Extending Interfaces

<<interface>
Car

<<interface>
Color

<<interface>
ColoredCar

public interface ColoredCar extends Car, Color
{
 public String goFaster();
}

public interface Car
{
 public String getSpeed();
}

public interface Color
{
 public String getBaseColor();
}

32

Common Naming Conventions

± There are few conventions when naming interfaces:

± Suffix able is often used for interfaces

±Cloneable, Serializable, and Transferable

± Nouns are often used for implementing classes names, and I +

noun for interfaces

± Interfaces: IColor, ICar, and IColoredCar

±Classes: Color, Car, and ColoredCar

± Nouns are often used for interfaces names, and noun+Impl for
implementing classes

± Interfaces: Color, Car, and ColoredCar

±Classes: ColorImpl, CarImpl, and ColoredCarImpl

33

Review

± What is inheritance?

± Implementation Inheritance

±Method lookup in Java

±Use of this and super

±Constructors and inheritance

±Abstract classes and methods

± Interface Inheritance

±Definition

±Implementation

±Type casting

±Naming Conventions

Except where otherwise noted, this content is
licensed under a Creative Commons
Attribution-NonCommercial 3.0 License.
!
For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

