Agile Software Development

Eamonn de Leastar (edeleastar@wit.ie)

Department of Computing, Maths & Physics
Waterford Institute of Technology

htto://
htto://
Waterford Institute of Technology eLearning_
support unit

;;.‘\ g INSTITIOID TECNEOLAIOCHTA PHORT LARGE
[—tnd

I

mailto:edleastar@wit.ie

Inheritance in Java

Java Essentials

< Overview
% Introduction
< Syntax
< Basics
4 Arrays
¢ Classes
¢ Classes Structure
<4 Static Members

< Commonly used
Classes

< Control Statements

< Control Statement
Types

< |f, else, switch

< For, while, do-
while

% Inheritance
% Class hierarchies

< Method lookup in
Java

4 Use of this and super

% Constructors and
inheritance

% Abstract classes and
methods

Interfaces
% Collections
< ArrayList
4 HashMap
< |terator
< Vector
< Enumeration
< Hashtable

< Exceptions
< Exception types

< Exception
Hierarchy

% Catching
exceptions

% Throwing
exceptions

¢ Defining exceptions

Common exceptions
and errors

< Streams
% Stream types
% Character streams
< Byte streams
% Filter streams

% Object Serialization
3

Overview

< What is inheritance?
< Implementation Inheritance
+ Method lookup in Java
4 Use of this and super
< Constructors and inheritance
< Abstract classes and methods
% Interface Inheritance
< Definition
4 Implementation
< Type casting
©“Naming Conventions

&

&

What is Inheritance?

Inheritance is one of the primary object-oriented
principles.

It is a mechanism for sharing commonalities between
classes

< Two types of Inheritance:

1.

Implementation Inheritance
% It promotes reuse

% Commonalities are stored in a parent class - called the
superclass

© Commonalities are shared between children classes - called the
subclasses

Interface Inheritance

% Mechanism for introducing Types into java design

% Classes can support more than one interface, i.e. be of more
than one type

generalization

Implementation Inheritance

Folicy

client
oremium
oolicyNumoer

getClient
setClient

JAN

Homerolicy

AUtOPOlicy

L feFPolicy

Nouse

auto

getHouse
setHouse

getAuto
setAuto

uonezijenads

Defining Inheritance

% |In Java, inheritance is supported by using keyword
extends
% It is said that subclass extends superclass

< If class definition does not specify explicit superclass, its
superclass is Object class

public class Policy {..

public class HomePolicy extends Policy{..
public class AutoPolicy extends Policy{..
public class LifePolicy extends Policy{..

public class Policy({.. public class Policy extends Object({..

Variables and Inheritance

% Variables can be declared against the base class, and
assigned objects of more derived classes

% E.g. Variable declared as of type Policy can be assigned
an instance of any Policy’s subclasses

Policy policy;
policy = new Policy();

Policy policy;
policy = new HomePolicy();

Policy policy;
policy = new AutoPolicy();

Policy policy;
policy = new LifePolicy();

Multiple Inheritance

% Not supported in Java

4 A class cannot extend more than one class

< There is only one direct superclass for any class

4 Object class is exception as it does not have superclass

What is Inherited?

< In general all subclasses inherit from superclass:
% Data
< Behavior

+ When we map these to Java it means that subclasses
iInherit:
4 Fields (instance variables)
4 Methods

Inheriting Fields

< All fields from superclasses are inherited by a subclass
% Inheritance goes all the way up the hierarchy

client client

premium PO“CV premium
policyNumber /\ policyNumber
client
house | T1OMEFOlCy | premium

policyNumber
house

Inheriting Methods

< All methods from superclasses are inherited by a

subclass

% Inheritance goes all the way up the hierarchy

getClient
setClient

getPremium

setPremium PO\ICV
getPolicyNumber A
setPolicyNumber

getHouse HomePolicy
setHouse

getClient
setClient
getPremium
setPremium
getPolicyNumber
setPolicyNumber

getClient
setClient
getPremium
setPremium
getPolicyNumber
setPolicyNumber
getHouse
setHouse

10

Method Lookup

ﬁomePolicy homePolicy = new HomePolicy()
Q} MethOd IOOkUp EomePolicy.getPremium() ;
begins in the class
of th.at object that HomePolicy
receives a P
message getHouse
HomePolicy class — method not found | —] setHouse
< If method is not Policy
found IOOkUp oo | thod f ; oremium
' ' olicy ClasS — method roun .
superclass setPremium

JAN

(nis vs. super

< They are both names of the receiver object

% The difference is where the method lookup begins:
< this
< Lookup begins in the receiver object’s class
< super

< Lookup begins in the superclass of the class where the method is
defined

12

class Policy
{
//..
public void print ()
{
System.out.println("A " + getClass().getName() + ", S$" + getPremium())
}
// ..
}

A 4

Policy p = new Policy(); |:> A Policy, $1,200.00
p.print () ;

class HomePolicy extends Policy
{
//.. '
public void print () F%)ij
{ AN
super.print () ;
System.out.println("for house " + getHouse () .toString(); :
) HomerFolicy
/...
}
HomePolicy h = new HomePolicy();

[:> A HomePolicy, $1,200.00

h.print () for house 200 Great Street

4.0
O

Method Overriding

¢ |f a class defines the same method as its superclass, it is
said that the method is overridden

4 Method signatures must match

Folicy
Homerolicy
//Method in the Policy class
public void print ()
{
System.out.println("A " + getClass().getName() + ", $" + getPremium());

}

//Overridden method in the HomePolicy class
public void print()
{
super.print () ;
System.out.println("for house " + getHouse () .toString()
}

14

Overriding Constructors

< Similar to overriding methods, applying rules specific to
constructors:

% First line in the constructor must be either
this(parameters) or super(parameters)

% This eventually leads to the Object class constructor that
creates the object

% If the call is not coded explicitly then an implicit zero-argument
super() is called

% If the superclass does not have a zero-argument constructor,
this causes an error

15

Example of Overriding Constructors

public Policy(double premium, Client aClient,

String policyNumber)
{

this.premium

= premium;
this.policyNumber = policyNumber;
this.client = aClient;

Folicy
/\

Homerrolicy

public HomePolicy(double premium,
Client aClient,

String policyNumber,
House aHouse)

super (premium, aClient, policyNumber);
this.house = aHouse;

Abstract Classes

- Classes that cannot have instances

% They are designed to hold inherited fields and methods for
subclasses

< They also define what subclasses should implement
¢ Details are left for concrete implementation in subclasses

< Usually specified at the design level

17

Defining Abstract Classes

© Modifier abstract is used to indicate abstract class

public abstract class Policy {..

Policy
/\

HomerPolicy Autorolicy LifeFPolicy

Abstract Methods

% Can only be defined in abstract classes
© Abstract classes can contain concrete methods as well

© Declaration of abstract method in concrete class will result in
compile error

< Declare method signatures
< Implementation is left to the subclasess

% Each subclass must have concrete implementation of the
abstract method

4 Used to impose method implementation on subclasses

19

Defining Abstract Methods...

< Modifier abstract is also used to indicate abstract method

{
}

public abstract void calculateFullPremium() ;

public abstract class Policy

Policy
calculateFullPremium
AN
HomePolicy Autorolicy LifePolicy

20

...Defining Abstract Methods

% All'subclasses must implement all abstract methods

public class HomePolicy extends Policy
{
// ..
public void calculateFullPremium /()
{
//calculation may depend on a criteria about the house
}
}

public class AutoPolicy extends Policy

{
/7 ..

public void calculateFullPremium ()

{

//calculation may depend on a criteria about the auto

}

public class LifePolicy extends Policy

{
/7 ..

public void calculateFullPremium ()

{

//calculation may depend on a criteria about the client

}

Interface Inheritance

4 |Interfaces define a set of methods but do not provide
implementation of those methods

< Similar in principle to an abstract class all of whose
methods are abstract.

¢ Classes that implement interfaces must provide
Implementation methods as specified in the Interface
definition

¢ Interfaces are said to specify Types

¢ Classes can implement one or more Interfaces as
appropriate i.e. have more than one type.

27

Interfaces Define Types

¢ Interfaces define Types
¢ They define common protocol
% Can be used to promote design to a higher level of abstraction

4 Can be used where multiple implementations of one abstraction
are envisaged

¢ Interfaces are used to impose typing

< If a variable is declared as of an interface type, than an instance
of any class that implements that interface can be assigned to
that variable

23

Defining Interface

< Similar to defining
classes

% Keyword interface used
instead of class keyword

<« Defined methods contain
sighatures only

© |Interfaces are also stored
in .java files

public interface |IAddressBook

{

void clear();

IContact getContact(String lastName);

void addContact(IContact contact);

int numberOfContacts();

void removeContact(String lastName);

String listContacts();

24

Implementing Interfaces

public class AddressBook implements |AddressBook

{
& Classes private staticint MAXCONTACTS = 1000;
_ private Contact[] contacts;
Implement private int nmrContacts;
interfaces
public AddressBook()
< Keyword {
implements is contacts = new ContactfMAXCONTACTS];
used nmrContacts = 0;
% They must define)

all methods that
interface they
implement
declares

private int locatelndex(String lastName)

{
...

}
public void clear()

{
/...

Rules

% Interfaces can contain:
% Only method signatures
% Only final static fields

< Interfaces cannot contain:
< Any fields other than final static fields
% Any static methods
< Any method implementation
% Any constructors

20

Reference vs Interface type

© Variable can be
declared as:

4 Reference type

% Any instance of
that class or any of
the subclasses can
be assigned to the
variable

¢ Interface type

< Any instance of
any class that
implements that
interface can be
assigned to the
variable

IAddressBook book;

book = new AddressBook () ;
book.clear() ;
book.addContact (contact) ;
//.. etc..

book = new AddressBookMap () ;
book.clear() ;
book.addContact (contact) ;
//.. etc..

book declared as IAddressBook interface type

27

Variables and Messages

< If variable is
defined as a
certain type, only
messages defined
for that type can
be sent to the
variable

IAddressBook book;
book = new AddressBook() ;

book.clear () ;
book .addContact (contact) ;

int 1 = book.locateIndex(“mike”) ;
// Error - locateIndex() is defined in

// AddressBook - but not in
// IAddressBook

28

Type Casting

<% Type casting can be subverted by type checking.

% To be used rarely and with care.
< Type cast can fail, and run time error will be generated if
the book object really is not an AddressBook

(e.g it could be an AddressBookMap which also implements
|AddressBook)

IAddressBook book;

book = new AddressBook () ;

book.clear () ;
book .addContact (contact) ;

int i = ((AddressBook)book) .locateIndex(“mike”) ;

Type cast from |IAddressBook to AddressBook

29

Interfaces can be Inherited

< It is possible that one interface extends other interfaces
% Sometimes known as “subtyping”
% Multiple inheritance is allowed with interfaces

< Inheritance works the same as with classes
< All methods defined are inherited

30

Extending Interfaces

public interface Car

{
public String getSpeed();

}

public interface Color

{
public String getBaseColor();

}

<<interface>
Car

<<interface>

Color

7AN

N

<<interface>
ColoredCar

{

}

public interface ColoredCar extends Car, Color

public String goFaster();

31

Common Naming Conventions

% There are few conventions when naming interfaces:

< Suffix able is often used for interfaces
< Cloneable, Serializable, and Transferable

% Nouns are often used for implementing classes names, and | +
noun for interfaces
< Interfaces: IColor, ICar, and IColoredCar
¢ Classes: Color, Car, and ColoredCar

< Nouns are often used for interfaces names, and noun+Impl for
implementing classes

% Interfaces: Color, Car, and ColoredCar
¢ Classes: Colorimpl, Carlmpl, and ColoredCarlmpl

32

Review

< What is inheritance?
< Implementation Inheritance
< Method lookup in Java
< Use of this and super
< Constructors and inheritance
% Abstract classes and methods
% Interface Inheritance
4 Definition
< Implementation
< Type casting
% Naming Conventions

33

Waterford Institute of Technology

N WSTINOID TECNEOLAIOCHTA PHORT LARGE

OIS

Except where otherwise noted, this content is
licensed under a Creative Commons
Attribution-NonCommercial 3.0 License.

For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

>

eLearning
support unit

