Agile Software Development

Eamonn de Leastar (edeleastar@wit.ie)

Waterford Institute of Technology

px\ 5 INSTINJID THCNEOLAIOCHTA PHORT LARCE
T e

mailto:edleastar@wit.ie

Streams

=
A

(-
m

Java Language Java Language

Tool APIs

Deployment

User Interface
Toolkits

Integration
Libraries

Other Base

Libraries Java SE
NI DateandTime InputOutput Internationalization ae!
Compact
lang and util Profiles
—— Collections Ref Objects Regular Expressions

lang and util
Base Libraries

Logging Management Instrumentation Concurrency Utilities

Reflection Versioning Preferences API JAR Zip

Java Virtual Machine Java HotSpot Client and Server VM

http://www.oracle.com/technetwork/java/javase/tech/index.html

http://www.oracle.com/technetwork/java/javase/tech/index.html

Introduction

4 An /O Stream represents an input source or an output
destination.

4 A stream can represent
¢ disk files
% devices
% other programs

4 Streams support
% simple bytes
< primitive data types
% localized characters
< objects.

© Some streams simply pass on data, others manipulate
and transform the data in useful ways.

Byte-Oriented Streams

ByteArrayOutputStream

ObjectInputStream

LineNumberlnputStream

PipedinputStream

PushbackInputStream

SequencelnputStream

/ FileOutputStream / BufferedOutputStream
OutputStream FilterOutputStream DataOutputStream
\\ ObjectOutputStream \ PrintStream
PipedOutputStream
Object
ByteArraylnputStream
BufferedInputStream
FileInputStream /
/ [DatalnputStream
InputStream FilterinputStream <

StringBufferinputStream

Text Oriented Streams

BufferedWriter

CharArrayWriter

FilterWriter

Writer

OutputStreamWriter

FileWriter

PipedWriter

PrintWriter

StringWriter

Object

BufferedReader

LineNumberReader

CharArrayReader

Reader

FilterReader

PushbackReader

InputStreamReader

FileReader

PipedReader

StringReader

Input/Output Streams

< A stream is a sequence of data.

< A Java program uses an input stream to read data from
a source, one item at a time:

disk files
program ——

device Data Source (9011010000)1001000011)1001010101)
socket |

array

Program

< A Java program uses an outputstream to write data to a
destination, one item at time:

Program

Stream

Data
(0011010000) 1001000011 J1001010101) Destination

Byte Streams

< Byte streams perform 1/O of
8-bit bytes.

< All byte stream classes are
descended from o
InputStream & /
OutputStream. =

< To read/write from files, use \
Filelnputstream and [InputStream — FilterinputStream

. \| ObjectinputStream
FI Ieo utputst ream .]PipedlnputStream PushbacklnputStream I

4 Other kinds of byte streams s
are used much the same
way; they differ mainly in the
way they are constructed.

ByteArrayOutputStream I

FileOutputStream | jBufferedOutputStream |

FilterOutputStream DataOutputStream |

ObjectOutputStream I PrintStream |

PipedOutputStream

ByteArraylnputStream

BufferedlnputStream

FilelnputStream

DatalnputStream

NS

LmeNumberInputStream |

ZaNZN

‘IStringBufferInputStream I

public class CopyBytes

{

public static void main(String[] args) throws

{

FileInputStream 1in = null;
FileOutputStream out = null;
try

{

}

in = new FileInputStream("input.txt");
out = new FileOutputStream("final.txt");
int c;
while ((c = in.read()) '= -1)
{

out.write(c);

}

finally

{

if (in '= null)
{

in.close () ;
}
if (out != null)
{

out.close () ;

}

CopyBytes

IOException

CopyBytes

< An int return type allows read() to
use -1 to indicate end of stream. Input Stream

& CopyBytes uses a finally blockto ~ © " a:”_? .
guarantee that both streams will be inputStrean. read (b)
closed even if an error occurs. this l
helps avoid resource leaks. eger Varisbl

< If CopyBytes was unable to open
one or both files the stream variable l

inputStream.write (b)
L

never changes from its initial null
value. Il n Xanadu
4 Byte streams should only be used oupster
for the most primitive 1/0.
< However, all other stream types are
built on byte streams.

v
d

Character Streams

% Java stores character -
values using Unicode / Crarraywiter]
FilterWriter I

é& Character Stream I/O Writer - Outp\:vtStreamWriterl—iFiIeWriter

automatically translates this \p.pedwme, |
PrintWriter I

to and from the local

StringWriter |

character set. [Ghiec |
< In Western locales, the local /h’*dydd :—ibdl
Character Set iS usua”y an |Reader éFilterReader |—|PushbackReader I

8-bit superset of ASCII. \Efdd :_"d I

< 1/0O with character stream
classes automatically
translates to/from the local
character set.

StringReader I

CopyCharacters

public class CopyCharacters

{

public static void main(String[] args) throws IOException

{

FileReader inputStream = null;
FileWriter outputStream = null;
try
{
inputStream = new FileReader ("input.txt");
outputStream = new FileWriter ("final.txt");
int c;
while ((c = inputStream.read()) !'= -1)
{
outputStream.write(c);
}
}
finally
{
if (inputStream != null)
{
inputStream.close() ;
}
if (outputStream != null)
{
outputStream.close () ;

}

10

CopyCharacters vs CopyBytes

4 CopyCharacters is very similar to CopyBytes.
< CopyCharacters uses FileReader and FileWriter
% CopyBytes uses FilelnputStream and FileOutputStream.

< Both use an int variable to read to and write from.

% CopyCharacters int variable holds a character value in its last 16
bits
% CopyBytes int variable holds a byte value in its last 8 bits

4 Character streams are often "wrappers" for byte
streams.

< A byte stream to perform the physical I/O

“The character stream handles translation between
characters and bytes.

< E.g. FileReader uses FilelnputStream, while FileWriter
uses FileOutputStream. "

Buffered 10

© So far we have used unbuffered I/0:

<% Each read or write request is handled directly by the underlying
OS.

% Can be less efficient, since each such request often triggers
disk or network access.

© To reduce this kind of overhead use buffered I/O
streams.

% Read data from a memory area known as a buffer

< Native input APl is called only when the buffer is empty.
< Buffered output streams write data to a buffer

% Native output API is called only when the buffer is full.

12

Line-Oriented |O

% Character I/O usually occurs in bigger units than single
characters.

% One common unit is the line:
% a string of characters with a line terminator at the end.

4 A line terminator can be
% a carriage-return/line-feed sequence ("\r\n")
% a single carriage-return ("\r"), or a single line-feed ("\n").

4 Supporting all possible line terminators allows programs
to read text files created on any of the widely used
operating systems.

13

public class CopyLines

{

public static void main(String[] args) throws IOException

{

BufferedReader inputStream = null;
PrintWriter outputStream = null;
try

{

CopyLines

inputStream = new BufferedReader (new FileReader ("xanadu.txt"));
outputStream = new PrintWriter (new FileWriter ('"characteroutput.txt"));

String 1;
while ((1 = inputStream.readLine())
{
outputStream.println(l);
}
}
finally
{
if (inputStream !'= null)
{
inputStream.close() ;

}

if (outputStream !'= null)
{
outputStream.close () ;

}

1= null)

14

BufferedReader

© An unbuffered stream can be converted into a
buffered stream using the wrapper idiom:

4 The unbuffered stream object is passed to the
constructor for a buffered stream class.

try
{
inputStream = new BufferedReader (new FileReader ("input.txt"))
outputStream = new PrintWriter (
new BufferedWriter (
new FileWriter ('"characteroutput.txt")));

String 1;

while ((1 = inputStream.readLine()) !'= null)

{
outputStream.println(l);

}
}

15

Flushing Buffers

< There are four buffered stream classes used to wrap
unbuffered streams:

¢ BufferedInputStream and BufferedOutputStream for byte
streams,

¢ BufferedReader and BufferedWriter for character streams.
4 |t often makes sense to write out a buffer at critical points,
without waiting for it to fill.
% This is known as flushing the buffer.

© Some buffered output classes support autoflush,
specified by an optional constructor argument.

< When autoflush is enabled, certain key events cause the
buffer to be flushed. For example, an autoflush PrintWriter
object flushes the buffer on every invocation of println or
format.

¢ To flush a stream manually, invoke its flush method.

16

http://java.sun.com/javase/6/docs/api/java/io/BufferedInputStream.html
http://java.sun.com/javase/6/docs/api/java/io/BufferedOutputStream.html
http://java.sun.com/javase/6/docs/api/java/io/BufferedReader.html
http://java.sun.com/javase/6/docs/api/java/io/BufferedWriter.html

Scanning

% Objects of type Scanner break input into tokens and
translate individual tokens according to their data type.

< By default, a scanner uses white space to separate
tokens.

% To use a different token separator, invoke useDelimiter(),
specifying a regular expression.

% Even though a scanner is not a stream, you need to
close it to indicate that you're done with its underlying
stream.

17

http://java.sun.com/javase/6/docs/api/java/util/Scanner.html

ScanFile

public class ScanFile
{
public static void main(String[] args) throws IOException
{
Scanner s = null;
try
{
s = new Scanner (new BufferedReader (
new FileReader ("input.txt")));
while (s.hasNext())
{
System.out.println(s.next()) ;
}
}
finally
{
if (s '= null)
{

s.close();

}

18

Translating Individual Tokens

public class ScanSum

{

public static void main(String[] args) throws IOException
{

Scanner s = null;

double sum = 0;

try
{

s = new Scanner (new BufferedReader (new FileReader ("usnumbers.txt")));
while (s.hasNext())
{

if (s.hasNextDouble())

{

sum += s.nextDouble ()
}
else
{
s.next (),
}
}
}
finally
{

s.close () ;

}

System.out.println (sum) ;

}

Translating Individual Tokens

© ScanSum reads a list of double values and adds them
up

4 The ScanFile example treats all input tokens as simple
String values.

4 Scanner also supports tokens for all of the Java
language's primitive types as well as Biglnteger and
BigDecimal.

20

Command Line I/O

< A program is often run from the command line, and
Interacts with the user in the command line
environment.

% The Java platform supports this kind of interaction in
two ways:

© Standard Streams
“©Console.

21

Standard Streams

< A feature of many operating systems, they read input
from the keyboard and write output to the display.

% They also support I/0O on files and between programs
(controlled by the shell).

% The Java platform supports three Standard Streams:
¢ Standard Input, accessed through System.in;

% Standard Output, accessed through System.out;
<% Standard Error, accessed through System.err.

4 These objects are defined automatically (do not need to
be opened)

¢ Standard Output and Standard Error are both for output

4 Having error output separately allows the user to divert
regular output to a file and still be able to read error
messages.

22

System.in, System.out, System.err

< For historical reasons, the standard streams are byte
streams (more logically character streams).

4 System.out and System.err are defined as PrintStream

objects.

< Although it is technically a byte stream, PrintStream
utilizes an internal character stream object to emulate
many of the features of character streams.

< By contrast, System.in is a byte stream with no
character stream features.

4 To utilize Standard Input as a character stream, wrap
System.in in InputStreamReader.

InputStreamReader cin = new InputStreamReader(System.in);

23

http://java.sun.com/javase/6/docs/api/java/io/PrintStream.html

Console

« New for Java 6 - a more advanced alternative to the
Standard Streams

% This is a single pre-defined object of type Console that
has most of the features provided by the Standard
Streams.

4 The Console object also provides input and output
streams that are true character streams, through its
reader and writer methods.

< Before a program can use the Console, it must attempt
to retrieve the Console object by invoking
System.console|).
< |If the Console object is available, this method returns it.

< If it returns NULL, then Console operations are not permitted,
either because the OS doesn't support them, or because the
program was launched in a non-interactive environment.

24

http://java.sun.com/javase/6/docs/api/java/io/Console.html

Password Entry

% The Console object supports secure password entry
through its readPassword method.

% This method helps secure password entry in two ways. it
suppresses echoing, so the password is not visible on the users
screen.

% readPassword returns a character array, not a String, so that the
password can be overwritten, removing it from memory as soon
as it is no longer needed.

25

Password (1)

public class Password

{

public static void main(String[] args) throws IOException

{

Console ¢ = System.console()

if (¢ == null)

{
System.err.println("No console.");
System.exit (1),

}

String login = c.readLine ("Enter your login: ") ;
char[] oldPassword = c.readPassword("Enter your old password:

//..

");

20

Password (2)

//..
if (verify(login, oldPassword))
{

boolean noMatch;

do

{
char[] newPasswordl = c.readPassword("Enter your new password:
char[] newPassword2 = c.readPassword("Enter new password again:
noMatch = !Arrays.equals (newPasswordl, newPassword?),

if (noMatch)
{

c.format ("Passwords don't match. Try again.%n");

}

else
{
change (login, newPasswordl) ,
c.format ("Password for %s changed.%n", login)

}

Arrays.fill (newPasswordl, ' ');
Arrays.fill (newPassword2, ' ');
}
while (noMatch) ;
}
Arrays.fill (oldPassword, ' '),

}

");
H);

27

Method Summary

void

flushi)
Flushes the console and forces any buffered output to be written immediately .

Console

format (String fmt, Obhject... args)
Writes a formatted stning to this console's output stream using the specified format string
and arguments.

Console

printf (String format, Object... args)
A conventence method to write a formatted stning to this console's output stream using
the specified format string and arguments.

Reader

reader ()
Retrnieves the unique Reader object associated with this console.

String

readLine ()

Reads a single line of text from the console.

String

readLine (String fmt, Obhject... args)
Prowides a formatted prompt, then reads a single line of text from the console.

char[]

readPassword ()

Reads a password or passphrase from the console with echoing disabled

char[]

readPassword (String fmt, Object... args)
Prowdes a formatted prompt, then reads a password or passphrase from the console
with echoing disabled.

Printiiriter

writer ()
Retrieves the unique PrintUriter object associated with this console.

28

Data Streams

¢ Data streams support binary

|/O of primitive data type

ByteArrayOutputStream

FlIeOutputStream BufferedOutputStream I

values (boolean, char, byte,
[OutputStream

FilterOutputStream DataOutputStream

ObjectOutputStream PrintStream

short, int, long, float, and
double) as well as String /

PipedOutputStream

| Object

values.

ByteArrayInputStream

Buffered InputStream |

4 All data streams implementlmpmstream

FilelnputStream

DatalnputStream

FllterlnputStream

either the Datalnput interface

LineNumberlnputStream |

_A___ _

ObjectinputStream

PushbackInputStream |

or the DataOutput interface.

| PipedinputStream I

% The most widely-used
implementations of these
interfaces are
DatalnputStream and
DataOutputStream.

SequencelnputStream

S
”
\

StringBufferlnputStream I

29

http://java.sun.com/javase/6/docs/api/java/io/DataInput.html
http://java.sun.com/javase/6/docs/api/java/io/DataOutput.html
http://java.sun.com/javase/6/docs/api/java/io/DataInputStream.html
http://java.sun.com/javase/6/docs/api/java/io/DataOutputStream.html

DataStream (1)

public class DataStream

{

static final String dataFile = "invoicedata';,
static final double[] prices = { 19.99, 9.99, 15.99, 3.99, 4.99 };
static final int[] units = { 12, 8, 13, 29, 50 },
static final String[] descs = { "Java T-shirt", '"Java Mug",
"Duke Juggling Dolls",
"Java Pin", "Java Key Chain"};

public static void main(String[] args) throws IOException
{
DataOutputStream out = new DataOutputStream (
new BufferedOutputStream(new FileOutputStream(dataFile))),

for (int 1 = 0; i < prices.length,; i++)
{
out.writeDouble (prices[i])
out.writeInt(units[i]),
out.writeUTF (descs[i]),

}

out.close() ;

//..continued

DataStream (2)

DataInputStream in = new DataInputStream(
new BufferedInputStream (
new FileInputStream(dataFile))),

double price;
int unit;
String desc;
double total = 0.0;
try
{
while (true)
{
price = in.readDouble() ;
unit = in.readInt()
desc = in.readUTF() ;
System.out. format ("You ordered %d units of $%s at $%.2f%n"

unit, desc, price);,

/7

total += unit * price;
}
}
catch (EOFException e)
{
System.out.println("End of file');,
}

31

Data Streams Observations

< The writeUTF method writes out String values in a
modified form of UTF-8.

% A variable-width character encoding that only needs a single
byte for common Western characters.
< Generally, we detects an end-of-file condition by
catching EOFException, instead of testing for an invalid
return value.

% Each specialized write in DataStreams is exactly
matched by the corresponding specialized read.

% Floating point numbers not recommended for monetary
values
% In general, floating point is bad for precise values.
% The correct type to use for currency values is
java.math.BigDecimal.
< Unfortunately, BigDecimal is an object type, so it won't
work with data streams — need Object Streams. 32

http://java.sun.com/javase/6/docs/api/java/io/EOFException.html
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html

Object Streams

4 Data streams support I/O of primitive data types, object
streams support I/O of objects.
< A class that can be serialized implements the marker interface
Serializable.
4 The object stream classes are ObjectinputStream and
ObjectOutputStream.

% They implement Objectinput and ObjectOutput, which are
subtypes of Datalnput and DataOutput.

% Thus all the primitive data I/0 methods covered in Data Streams
are also implemented in object streams.

% An object stream can contain a mixture of primitive and object
values
4 |f readObject() doesn't return the object type expected,
attempting to cast it to the correct type may throw a
ClassNotFoundException.

33

http://java.sun.com/javase/6/docs/api/java/io/Serializable.html
http://java.sun.com/javase/6/docs/api/java/io/ObjectInputStream.html
http://java.sun.com/javase/6/docs/api/java/io/ObjectOutputStream.html
http://java.sun.com/javase/6/docs/api/java/io/ObjectInput.html
http://java.sun.com/javase/6/docs/api/java/io/ObjectOutput.html
http://java.sun.com/javase/6/docs/api/java/lang/ClassNotFoundException.html

I{Dublic class ObjectStreams O bj eCtSteam S

static final String dataFile = "invoicedata';,
static final BigDecimal[] prices = {new BigDecimal ("19.99"),
new BigDecimal ("9.99"),
new BigDecimal ("15.99"),
new BigDecimal ("3.99"),
new BigDecimal ("4.99") };
static final int[] units = { 12, 8, 13, 29, 50 };,
static final String[] descs = { "Java T-shirt", "Java Mug",
"Duke Juggling Dolls",
"Java Pin", "Java Key Chain" };
public static void main(String[] args)
throws IOException, ClassNotFoundException
{
ObjectOutputStream out = null;
try
{
out = new ObjectOutputStream (
new BufferedOutputStream(new FileOutputStream(dataFile)));,
out.writeObject (Calendar.getInstance()),
for (int i = 0; i < prices.length; i++)
{
out.writeObject(prices[i]),
out.writelInt(units[i]);,
out.writeUTF (descs[i])
}
}
finally
{
out.close() ;
}
//..
}

ObjectInputStream in = null;

= ObjectsStreams(?)

in = new ObjectInputStream (
new BufferedInputStream(new FileInputStream(dataFile)));,
Calendar date = null;
BigDecimal price;
int unit;
String desc;
BigDecimal total = new BigDecimal (0) ;

date = (Calendar) in.readObject() ;

System.out. format ("On %tA, %<tB %<te, %<tY:%n", date);,
try
{
while (true)
{
price = (BigDecimal) in.readObject();
unit = in.readInt();
desc = in.readUTF() ;
System. out. format ("You ordered %d units of %s at $%.2f%n'",unit, desc, price);
total = total.add(price.multiply(new BigDecimal (unit)));
}
}
catch (EOFException e)
{
}
System.out. format ("For a TOTAL of: $%.2f%n", total);
}
finally
{

in.close();

}

readObject() and writeObject()

4 The writeObject and readObject methods contain some
sophisticated object management logic.

4 This particularly important for objects that contain
references to other objects.

¢ |f readObiject is to reconstitute an object from a stream,
it has to be able to reconstitute all the objects the
original object referred to.

% These additional objects might have their own references, and
SO On.

4 |n this situation, writeObject traverses the entire web of
object references and writes all objects in that web onto
the stream. Thus a single invocation of writeObject can
cause a large number of objects to be written to the
stream. 36

Stream
writeObject (a) ——P cedba —J readObject ()

O £
d[b\ c d[b\e c

< If writeObject is invoked to write a single object named a.
% This object contains references to objects b and c,

<« while b contains references to d and e.

% Invoking writeobject(a) writes a and all the objects necessary
to reconstitute a

% When a is read by readObiject, the other four objects are
read back as well, and all the original object references are

preserved. -

Streams in AgileLab05

public class Pim implements IPim

{

private AddressBookMap addressBook;

public Pim()
{

newPim () ;

}

public IAddressBook getAddressBook ()
{

return addressBook;

}

public void newPim()

{
addressBook = new AddressBookMap() ;

}
//..

38

open

public boolean open(String filename)

{

boolean success = false;
try
{

File source = new File(filename) ;

ObjectInputStream is = new ObjectInputStream(new FileInputStream(source)) ;

addressBook = (AddressBookMap) is.readObject() ;
is.close() ;
success = true;
}
catch (ClassNotFoundException e)
{
e.printStackTrace() ;
}
catch (IOException e)
{

e.printStackTrace() ;

}

return success;

39

Save

public boolean save (String filename)
{
boolean success = false;
try
{
File destination = new File(filename) ;

ObjectOutputStream os
= new ObjectOutputStream(new FileOutputStream(destination)) ;

os.writeObject (addressBook) ;
os.close() ;
success = true;

}
catch (IOException e)

{

e.printStackTrace() ;

}

return success;

40

Serializable Marker Interface

public class AddressBookMap implements IAddressBook, Serializable

{

private static final long serialVersionUID = 1L;
private Map<String, IContact> contacts;
//...

}

public class Contact implements IContact, Serializable

{

private static final long serialVersionUID = 1L;
/7. ..
}

© The serialVersionUID should be incremented if the class structure
changes.

41

transient

< |f a field is to be excluded from the serialisation
mechanism it can be marked “transient”.

< writeObject() will ignore these fields and readObject()
will not attempt to read them.

public class AddressBookMap implements IAddressBook, Serializable

{

private static final long serialVersionUID = 1L;
private Map<String, IContact> contacts;
private transient Map<String, IContact> removedContacts;

//...

42

Abstract the Mechanism

public interface ISerializationStrategy

{

void write(String filename, Object obj) throws Exception;
Object read(String filename) throws Exception;

}

< Defining this interface will allow us to build different
serialization strategies.

4 We can decide which to use at compile time, or at run
time.

43

Binarv Strateav

public class BinarySerializer implements ISerializationStrategy

{
public Object read(String filename) throws Exception
{

ObjectInputStream is = null;
Object obj = null;

try
{
is = new ObjectInputStream(new BufferedInputStream (

new FileInputStream(filename)));
obj = is.readObject();

}
finally

{
if (is '= null)
{

is.close() ;
}
}

return obj;

44

Binary Strategy (contd.)

public class BinarySerializer implements ISerializationStrategy

{
//..

public void write(String filename, Object obj) throws Exception

{
ObjectOutputStream os = null;
try
{
os = new ObjectOutputStream(new BufferedOutputStream (

new FileOutputStream(filename))) ;
os.writeObject (obj) ;

}
finally

{
if (os '= null)
{

os.close() ;

}

45

XML Strategy

public class XMLSerializer implements ISerializationStrategy

{

public Object read(String filename) throws Exception

{

ObjectInputStream is = null;
Object obj = null;

try
{
XStream xstream = new XStream(new DomDriver()) ;
is = xstream.createObjectInputStream(new FileReader (filename)) ;
obj = is.readObject();
}
finally
{
if (is '= null)
{
is.close() ;
}
}

return obj;

46

XML Strategy (contd.)

public class XMLSerializer implements ISerializationStrategy
{
//...
public void write(String filename, Object obj) throws Exception

{
ObjectOutputStream os = null;

try
{
XStream xstream = new XStream(new DomDriver()) ;
os = xstream.createObjectOutputStream(new FileWriter (filename)) ;
os.writeObject (obj) ;
}
finally
{
if (os !'= null)
{

os.close();

}

47

Waterford Institute of Technology

N WSTINOID TECNEOLAIOCHTA PHORT LARGE

OIS

Except where otherwise noted, this content is
licensed under a Creative Commons
Attribution-NonCommercial 3.0 License.

For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

>

eLearning
support unit

