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Introduction

4 An /O Stream represents an input source or an output
destination.

4 A stream can represent
¢ disk files
% devices
% other programs

4 Streams support
% simple bytes
< primitive data types
% localized characters
< objects.

© Some streams simply pass on data, others manipulate
and transform the data in useful ways.
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Text Oriented Streams
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Input/Output Streams

< A stream is a sequence of data.

< A Java program uses an input stream to read data from
a source, one item at a time:

disk files
program ——

device Data Source (9011010000)1001000011)1001010101)
socket |

array

Program

< A Java program uses an outputstream to write data to a
destination, one item at time:

Program

Stream

Data
(0011010000) 1001000011 J1001010101) Destination




Byte Streams

< Byte streams perform 1/O of
8-bit bytes.

< All byte stream classes are
descended from o
InputStream & /
OutputStream. =

< To read/write from files, use \
Filelnputstream and [ InputStream — FilterinputStream

. \| ObjectinputStream
FI Ieo utputst ream . ]PipedlnputStream PushbacklnputStream I

4 Other kinds of byte streams s
are used much the same
way; they differ mainly in the
way they are constructed.
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public class CopyBytes

{

public static void main(String[] args) throws

{

FileInputStream 1in = null;
FileOutputStream out = null;
try

{

}

in = new FileInputStream("input.txt");
out = new FileOutputStream("final.txt");
int c;
while ((c = in.read()) '= -1)
{

out.write(c);

}

finally

{

if (in '= null)
{

in.close () ;
}
if (out != null)
{

out.close () ;

}

CopyBytes

IOException



CopyBytes

< An int return type allows read() to
use -1 to indicate end of stream. Input Stream

& CopyBytes uses a finally blockto ~ © " a:”_? .
guarantee that both streams will be inputStrean. read (b)
closed even if an error occurs. this l
helps avoid resource leaks. eger Varisbl

< If CopyBytes was unable to open
one or both files the stream variable l

inputStream.write (b)
L

never changes from its initial null
value. Il n Xanadu
4 Byte streams should only be used oupster
for the most primitive 1/0.
< However, all other stream types are
built on byte streams.
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Character Streams

% Java stores character -
values using Unicode / Crarraywiter ]
FilterWriter I

é& Character Stream I/O Writer - Outp\:vtStreamWriterl—iFiIeWriter

automatically translates this \p.pedwme, |
PrintWriter I

to and from the local

StringWriter |

character set. [Ghiec |
< In Western locales, the local /h’*dydd :—ibdl
Character Set iS usua”y an |Reader éFilterReader |—|PushbackReader I

8-bit superset of ASCII. \Efdd :_"d I

< 1/0O with character stream
classes automatically
translates to/from the local
character set.

StringReader I




CopyCharacters

public class CopyCharacters

{

public static void main(String[] args) throws IOException

{

FileReader inputStream = null;
FileWriter outputStream = null;
try
{
inputStream = new FileReader ("input.txt");
outputStream = new FileWriter ("final.txt");
int c;
while ((c = inputStream.read()) !'= -1)
{
outputStream.write(c);
}
}
finally
{
if (inputStream != null)
{
inputStream.close() ;
}
if (outputStream != null)
{
outputStream.close () ;

}

10



CopyCharacters vs CopyBytes

4 CopyCharacters is very similar to CopyBytes.
< CopyCharacters uses FileReader and FileWriter
% CopyBytes uses FilelnputStream and FileOutputStream.

< Both use an int variable to read to and write from.

% CopyCharacters int variable holds a character value in its last 16
bits
% CopyBytes int variable holds a byte value in its last 8 bits

4 Character streams are often "wrappers" for byte
streams.

< A byte stream to perform the physical I/O

“The character stream handles translation between
characters and bytes.

< E.g. FileReader uses FilelnputStream, while FileWriter
uses FileOutputStream. "



Buffered 10

© So far we have used unbuffered I/0:

<% Each read or write request is handled directly by the underlying
OS.

% Can be less efficient, since each such request often triggers
disk or network access.

© To reduce this kind of overhead use buffered I/O
streams.

% Read data from a memory area known as a buffer

< Native input APl is called only when the buffer is empty.
< Buffered output streams write data to a buffer

% Native output API is called only when the buffer is full.
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Line-Oriented |O

% Character I/O usually occurs in bigger units than single
characters.

% One common unit is the line:
% a string of characters with a line terminator at the end.

4 A line terminator can be
% a carriage-return/line-feed sequence ("\r\n")
% a single carriage-return ("\r"), or a single line-feed ("\n").

4 Supporting all possible line terminators allows programs
to read text files created on any of the widely used
operating systems.
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public class CopyLines

{

public static void main(String[] args) throws IOException

{

BufferedReader inputStream = null;
PrintWriter outputStream = null;
try

{

CopyLines

inputStream = new BufferedReader (new FileReader ("xanadu.txt"));
outputStream = new PrintWriter (new FileWriter ('"characteroutput.txt"));

String 1;
while ((1 = inputStream.readLine())
{
outputStream.println(l);
}
}
finally
{
if (inputStream !'= null)
{
inputStream.close() ;

}

if (outputStream !'= null)
{
outputStream.close () ;

}

1= null)

14



BufferedReader

© An unbuffered stream can be converted into a
buffered stream using the wrapper idiom:

4 The unbuffered stream object is passed to the
constructor for a buffered stream class.

try
{
inputStream = new BufferedReader (new FileReader ("input.txt"))
outputStream = new PrintWriter (
new BufferedWriter (
new FileWriter ('"characteroutput.txt")));

String 1;

while ((1 = inputStream.readLine()) !'= null)

{
outputStream.println(l);

}
}

15



Flushing Buffers

< There are four buffered stream classes used to wrap
unbuffered streams:

¢ BufferedInputStream and BufferedOutputStream for byte
streams,

¢ BufferedReader and BufferedWriter for character streams.
4 |t often makes sense to write out a buffer at critical points,
without waiting for it to fill.
% This is known as flushing the buffer.

© Some buffered output classes support autoflush,
specified by an optional constructor argument.

< When autoflush is enabled, certain key events cause the
buffer to be flushed. For example, an autoflush PrintWriter
object flushes the buffer on every invocation of println or
format.

¢ To flush a stream manually, invoke its flush method.
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Scanning

% Objects of type Scanner break input into tokens and
translate individual tokens according to their data type.

< By default, a scanner uses white space to separate
tokens.

% To use a different token separator, invoke useDelimiter(),
specifying a regular expression.

% Even though a scanner is not a stream, you need to
close it to indicate that you're done with its underlying
stream.

17


http://java.sun.com/javase/6/docs/api/java/util/Scanner.html

ScanFile

public class ScanFile
{
public static void main(String[] args) throws IOException
{
Scanner s = null;
try
{
s = new Scanner (new BufferedReader (
new FileReader ("input.txt")));
while (s.hasNext())
{
System.out.println(s.next()) ;
}
}
finally
{
if (s '= null)
{

s.close();

}

18



Translating Individual Tokens

public class ScanSum

{

public static void main(String[] args) throws IOException
{

Scanner s = null;

double sum = 0;

try
{

s = new Scanner (new BufferedReader (new FileReader ("usnumbers.txt")));
while (s.hasNext())
{

if (s.hasNextDouble())

{

sum += s.nextDouble ()
}
else
{
s.next (),
}
}
}
finally
{

s.close () ;

}

System.out.println (sum) ;

}



Translating Individual Tokens

© ScanSum reads a list of double values and adds them
up

4 The ScanFile example treats all input tokens as simple
String values.

4 Scanner also supports tokens for all of the Java
language's primitive types as well as Biglnteger and
BigDecimal.

20



Command Line I/O

< A program is often run from the command line, and
Interacts with the user in the command line
environment.

% The Java platform supports this kind of interaction in
two ways:

© Standard Streams
“©Console.

21



Standard Streams

< A feature of many operating systems, they read input
from the keyboard and write output to the display.

% They also support I/0O on files and between programs
(controlled by the shell).

% The Java platform supports three Standard Streams:
¢ Standard Input, accessed through System.in;

% Standard Output, accessed through System.out;
<% Standard Error, accessed through System.err.

4 These objects are defined automatically (do not need to
be opened)

¢ Standard Output and Standard Error are both for output

4 Having error output separately allows the user to divert
regular output to a file and still be able to read error
messages.

22



System.in, System.out, System.err

< For historical reasons, the standard streams are byte
streams (more logically character streams).

4 System.out and System.err are defined as PrintStream

objects.

< Although it is technically a byte stream, PrintStream
utilizes an internal character stream object to emulate
many of the features of character streams.

< By contrast, System.in is a byte stream with no
character stream features.

4 To utilize Standard Input as a character stream, wrap
System.in in InputStreamReader.

InputStreamReader cin = new InputStreamReader(System.in);

23


http://java.sun.com/javase/6/docs/api/java/io/PrintStream.html

Console

« New for Java 6 - a more advanced alternative to the
Standard Streams

% This is a single pre-defined object of type Console that
has most of the features provided by the Standard
Streams.

4 The Console object also provides input and output
streams that are true character streams, through its
reader and writer methods.

< Before a program can use the Console, it must attempt
to retrieve the Console object by invoking
System.console|).
< |If the Console object is available, this method returns it.

< If it returns NULL, then Console operations are not permitted,
either because the OS doesn't support them, or because the
program was launched in a non-interactive environment.

24
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Password Entry

% The Console object supports secure password entry
through its readPassword method.

% This method helps secure password entry in two ways. it
suppresses echoing, so the password is not visible on the users
screen.

% readPassword returns a character array, not a String, so that the
password can be overwritten, removing it from memory as soon
as it is no longer needed.

25



Password (1)

public class Password

{

public static void main(String[] args) throws IOException

{

Console ¢ = System.console()

if (¢ == null)

{
System.err.println("No console.");
System.exit (1),

}

String login = c.readLine ("Enter your login: ") ;
char[] oldPassword = c.readPassword("Enter your old password:

//..

");

20



Password (2)

//..
if (verify(login, oldPassword))
{

boolean noMatch;

do

{
char[] newPasswordl = c.readPassword("Enter your new password:
char[] newPassword2 = c.readPassword("Enter new password again:
noMatch = !Arrays.equals (newPasswordl, newPassword?),

if (noMatch)
{

c.format ("Passwords don't match. Try again.%n");

}

else
{
change (login, newPasswordl) ,
c.format ("Password for %s changed.%n", login)

}

Arrays.fill (newPasswordl, ' ');
Arrays.fill (newPassword2, ' ');
}
while (noMatch) ;
}
Arrays.fill (oldPassword, ' '),

}

");
H);

27



Method Summary

void

flushi)
Flushes the console and forces any buffered output to be written immediately .

Console

format (String fmt, Obhject... args)
Writes a formatted stning to this console's output stream using the specified format string
and arguments.

Console

printf (String format, Object... args)
A conventence method to write a formatted stning to this console's output stream using
the specified format string and arguments.

Reader

reader ()
Retrnieves the unique Reader object associated with this console.

String

readLine ()

Reads a single line of text from the console.

String

readLine (String fmt, Obhject... args)
Prowides a formatted prompt, then reads a single line of text from the console.

char[]

readPassword ()

Reads a password or passphrase from the console with echoing disabled

char[]

readPassword (String fmt, Object... args)
Prowdes a formatted prompt, then reads a password or passphrase from the console
with echoing disabled.

Printiiriter

writer ()
Retrieves the unique PrintUriter object associated with this console.

28



Data Streams

¢ Data streams support binary

|/O of primitive data type

ByteArrayOutputStream

FlIeOutputStream BufferedOutputStream I

values (boolean, char, byte,
[ OutputStream

FilterOutputStream DataOutputStream

ObjectOutputStream PrintStream

short, int, long, float, and
double) as well as String /

PipedOutputStream

| Object

values.

ByteArrayInputStream

Buffered InputStream |

4 All data streams implementlmpmstream

FilelnputStream

DatalnputStream

FllterlnputStream

either the Datalnput interface

LineNumberlnputStream |

_A___ _

ObjectinputStream

PushbackInputStream |

or the DataOutput interface.

| PipedinputStream I

% The most widely-used
implementations of these
interfaces are
DatalnputStream and
DataOutputStream.

SequencelnputStream

S
”
\

StringBufferlnputStream I
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DataStream (1)

public class DataStream

{

static final String dataFile = "invoicedata';,
static final double[] prices = { 19.99, 9.99, 15.99, 3.99, 4.99 };
static final int[] units = { 12, 8, 13, 29, 50 },
static final String[] descs = { "Java T-shirt", '"Java Mug",
"Duke Juggling Dolls",
"Java Pin", "Java Key Chain"};

public static void main(String[] args) throws IOException
{
DataOutputStream out = new DataOutputStream (
new BufferedOutputStream(new FileOutputStream(dataFile))),

for (int 1 = 0; i < prices.length,; i++)
{
out.writeDouble (prices[i])
out.writeInt(units[i]),
out.writeUTF (descs[i]),

}

out.close() ;

//..continued



DataStream (2)

DataInputStream in = new DataInputStream(
new BufferedInputStream (
new FileInputStream(dataFile))),

double price;
int unit;
String desc;
double total = 0.0;
try
{
while (true)
{
price = in.readDouble() ;
unit = in.readInt()
desc = in.readUTF() ;
System.out. format ("You ordered %d units of $%s at $%.2f%n"

unit, desc, price);,

/7

total += unit * price;
}
}
catch (EOFException e)
{
System.out.println("End of file');,
}

31



Data Streams Observations

< The writeUTF method writes out String values in a
modified form of UTF-8.

% A variable-width character encoding that only needs a single
byte for common Western characters.
< Generally, we detects an end-of-file condition by
catching EOFException, instead of testing for an invalid
return value.

% Each specialized write in DataStreams is exactly
matched by the corresponding specialized read.

% Floating point numbers not recommended for monetary
values
% In general, floating point is bad for precise values.
% The correct type to use for currency values is
java.math.BigDecimal.
< Unfortunately, BigDecimal is an object type, so it won't
work with data streams — need Object Streams. 32
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Object Streams

4 Data streams support I/O of primitive data types, object
streams support I/O of objects.
< A class that can be serialized implements the marker interface
Serializable.
4 The object stream classes are ObjectinputStream and
ObjectOutputStream.

% They implement Objectinput and ObjectOutput, which are
subtypes of Datalnput and DataOutput.

% Thus all the primitive data I/0 methods covered in Data Streams
are also implemented in object streams.

% An object stream can contain a mixture of primitive and object
values
4 |f readObject() doesn't return the object type expected,
attempting to cast it to the correct type may throw a
ClassNotFoundException.

33
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I{Dublic class ObjectStreams O bj eCtSteam S

static final String dataFile = "invoicedata';,
static final BigDecimal[] prices = {new BigDecimal ("19.99"),
new BigDecimal ("9.99"),
new BigDecimal ("15.99"),
new BigDecimal ("3.99"),
new BigDecimal ("4.99") };
static final int[] units = { 12, 8, 13, 29, 50 };,
static final String[] descs = { "Java T-shirt", "Java Mug",
"Duke Juggling Dolls",
"Java Pin", "Java Key Chain" };
public static void main(String[] args)
throws IOException, ClassNotFoundException
{
ObjectOutputStream out = null;
try
{
out = new ObjectOutputStream (
new BufferedOutputStream(new FileOutputStream(dataFile)));,
out.writeObject (Calendar.getInstance()),
for (int i = 0; i < prices.length; i++)
{
out.writeObject(prices[i]),
out.writelInt(units[i]);,
out.writeUTF (descs[i])
}
}
finally
{
out.close() ;
}
//..
}



ObjectInputStream in = null;

= ObjectsStreams(?)

in = new ObjectInputStream (
new BufferedInputStream(new FileInputStream(dataFile)));,
Calendar date = null;
BigDecimal price;
int unit;
String desc;
BigDecimal total = new BigDecimal (0) ;

date = (Calendar) in.readObject() ;

System.out. format ("On %tA, %<tB %<te, %<tY:%n", date);,
try
{
while (true)
{
price = (BigDecimal) in.readObject();
unit = in.readInt();
desc = in.readUTF() ;
System. out. format ("You ordered %d units of %s at $%.2f%n'",unit, desc, price);
total = total.add(price.multiply(new BigDecimal (unit)));
}
}
catch (EOFException e)
{
}
System.out. format ("For a TOTAL of: $%.2f%n", total);
}
finally
{

in.close();

}



readObject() and writeObject()

4 The writeObject and readObject methods contain some
sophisticated object management logic.

4 This particularly important for objects that contain
references to other objects.

¢ |f readObiject is to reconstitute an object from a stream,
it has to be able to reconstitute all the objects the
original object referred to.

% These additional objects might have their own references, and
SO On.

4 |n this situation, writeObject traverses the entire web of
object references and writes all objects in that web onto
the stream. Thus a single invocation of writeObject can
cause a large number of objects to be written to the
stream. 36



Stream
writeObject (a) ——P cedba —J readObject ()

O £
d[b\ c d[b\e c

< If writeObject is invoked to write a single object named a.
% This object contains references to objects b and c,

<« while b contains references to d and e.

% Invoking writeobject(a) writes a and all the objects necessary
to reconstitute a

% When a is read by readObiject, the other four objects are
read back as well, and all the original object references are

preserved. -



Streams in AgileLab05

public class Pim implements IPim

{

private AddressBookMap addressBook;

public Pim()
{

newPim () ;

}

public IAddressBook getAddressBook ()
{

return addressBook;

}

public void newPim()

{
addressBook = new AddressBookMap() ;

}
//..

38



open

public boolean open(String filename)

{

boolean success = false;
try
{

File source = new File(filename) ;

ObjectInputStream is = new ObjectInputStream(new FileInputStream(source)) ;

addressBook = (AddressBookMap) is.readObject() ;
is.close() ;
success = true;
}
catch (ClassNotFoundException e)
{
e.printStackTrace() ;
}
catch (IOException e)
{

e.printStackTrace() ;

}

return success;

39



Save

public boolean save (String filename)
{
boolean success = false;
try
{
File destination = new File(filename) ;

ObjectOutputStream os
= new ObjectOutputStream(new FileOutputStream(destination)) ;

os.writeObject (addressBook) ;
os.close() ;
success = true;

}
catch (IOException e)

{

e.printStackTrace() ;

}

return success;

40



Serializable Marker Interface

public class AddressBookMap implements IAddressBook, Serializable

{

private static final long serialVersionUID = 1L;
private Map<String, IContact> contacts;
//...

}

public class Contact implements IContact, Serializable

{

private static final long serialVersionUID = 1L;
/7. ..
}

© The serialVersionUID should be incremented if the class structure
changes.

41



transient

< |f a field is to be excluded from the serialisation
mechanism it can be marked “transient”.

< writeObject() will ignore these fields and readObject()
will not attempt to read them.

public class AddressBookMap implements IAddressBook, Serializable

{

private static final long serialVersionUID = 1L;
private Map<String, IContact> contacts;
private transient Map<String, IContact> removedContacts;

//...

42



Abstract the Mechanism

public interface ISerializationStrategy

{

void write(String filename, Object obj) throws Exception;
Object read(String filename) throws Exception;

}

< Defining this interface will allow us to build different
serialization strategies.

4 We can decide which to use at compile time, or at run
time.
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Binarv Strateav

public class BinarySerializer implements ISerializationStrategy

{
public Object read(String filename) throws Exception
{

ObjectInputStream is = null;
Object obj = null;

try
{
is = new ObjectInputStream(new BufferedInputStream (

new FileInputStream(filename)));
obj = is.readObject();

}
finally

{
if (is '= null)
{

is.close() ;
}
}

return obj;

44



Binary Strategy (contd.)

public class BinarySerializer implements ISerializationStrategy

{
//..

public void write(String filename, Object obj) throws Exception

{
ObjectOutputStream os = null;
try
{
os = new ObjectOutputStream(new BufferedOutputStream (

new FileOutputStream(filename))) ;
os.writeObject (obj) ;

}
finally

{
if (os '= null)
{

os.close() ;

}

45



XML Strategy

public class XMLSerializer implements ISerializationStrategy

{

public Object read(String filename) throws Exception

{

ObjectInputStream is = null;
Object obj = null;

try
{
XStream xstream = new XStream(new DomDriver()) ;
is = xstream.createObjectInputStream(new FileReader (filename)) ;
obj = is.readObject();
}
finally
{
if (is '= null)
{
is.close() ;
}
}

return obj;
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XML Strategy (contd.)

public class XMLSerializer implements ISerializationStrategy
{
//...
public void write(String filename, Object obj) throws Exception

{
ObjectOutputStream os = null;

try
{
XStream xstream = new XStream(new DomDriver()) ;
os = xstream.createObjectOutputStream(new FileWriter (filename)) ;
os.writeObject (obj) ;
}
finally
{
if (os !'= null)
{

os.close();

}
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