
Produced
by

Agile Software Development

Eamonn de Leastar (edeleastar@wit.ie)

mailto:edleastar@wit.ie

Streams

http://www.oracle.com/technetwork/java/javase/tech/index.html

http://www.oracle.com/technetwork/java/javase/tech/index.html

4

Introduction

± An I/O Stream represents an input source or an output
destination.

± A stream can represent

± disk files

± devices

± other programs

± Streams support

± simple bytes

± primitive data types

± localized characters

± objects.

± Some streams simply pass on data, others manipulate
and transform the data in useful ways.

2

Byte-Oriented Streams

3

Text Oriented Streams

5

Input/Output Streams
± A stream is a sequence of data.

± A Java program uses an input stream to read data from

a source, one item at a time:

± A Java program uses an output stream to write data to a
destination, one item at time:

disk files
program
device
socket
array

6

Byte Streams
± Byte streams perform I/O of

8-bit bytes.

± All byte stream classes are

descended from
InputStream &
OutputStream.

± To read/write from files, use
FileInputStream and
FileOutputStream.

± Other kinds of byte streams
are used much the same
way; they differ mainly in the
way they are constructed.

7

CopyBytes
public class CopyBytes
{
 public static void main(String[] args) throws IOException
 {
 FileInputStream in = null;
 FileOutputStream out = null;
 try
 {
 in = new FileInputStream("input.txt");
 out = new FileOutputStream("final.txt");
 int c;
 while ((c = in.read()) != -1)
 {
 out.write(c);
 }
 }
 finally
 {
 if (in != null)
 {
 in.close();
 }
 if (out != null)
 {
 out.close();
 }
 }
 }
}

8

CopyBytes
± An int return type allows read() to

use -1 to indicate end of stream.

± CopyBytes uses a finally block to

guarantee that both streams will be
closed even if an error occurs. this
helps avoid resource leaks.

± If CopyBytes was unable to open
one or both files the stream variable
never changes from its initial null
value.

± Byte streams should only be used
for the most primitive I/O.

± However, all other stream types are
built on byte streams.

9

Character Streams

± Java stores character
values using Unicode

± Character stream I/O
automatically translates this
to and from the local
character set.

± In Western locales, the local
character set is usually an
8-bit superset of ASCII.

± I/O with character stream
classes automatically
translates to/from the local
character set.

10

CopyCharacters
public class CopyCharacters
{
 public static void main(String[] args) throws IOException
 {
 FileReader inputStream = null;
 FileWriter outputStream = null;
 try
 {
 inputStream = new FileReader("input.txt");
 outputStream = new FileWriter("final.txt");
 int c;
 while ((c = inputStream.read()) != -1)
 {
 outputStream.write(c);
 }
 }
 finally
 {
 if (inputStream != null)
 {
 inputStream.close();
 }
 if (outputStream != null)
 {
 outputStream.close();
 }
 }
 }
}

11

CopyCharacters vs CopyBytes
± CopyCharacters is very similar to CopyBytes.

± CopyCharacters uses FileReader and FileWriter

± CopyBytes uses FileInputStream and FileOutputStream.

± Both use an int variable to read to and write from.

± CopyCharacters int variable holds a character value in its last 16

bits

± CopyBytes int variable holds a byte value in its last 8 bits

± Character streams are often "wrappers" for byte
streams.

±A byte stream to perform the physical I/O

±The character stream handles translation between

characters and bytes.

± E.g. FileReader uses FileInputStream, while FileWriter

uses FileOutputStream.

12

Buffered IO

± So far we have used unbuffered I/O:

± Each read or write request is handled directly by the underlying

OS.

± Can be less efficient, since each such request often triggers

disk or network access.

± To reduce this kind of overhead use buffered I/O

streams.

± Read data from a memory area known as a buffer

± Native input API is called only when the buffer is empty.

± Buffered output streams write data to a buffer

± Native output API is called only when the buffer is full.

13

Line-Oriented IO
± Character I/O usually occurs in bigger units than single

characters.

± One common unit is the line:

± a string of characters with a line terminator at the end.

± A line terminator can be

± a carriage-return/line-feed sequence ("\r\n")

± a single carriage-return ("\r"), or a single line-feed ("\n").

± Supporting all possible line terminators allows programs
to read text files created on any of the widely used
operating systems.

14

public class CopyLines
{
 public static void main(String[] args) throws IOException
 {
 BufferedReader inputStream = null;
 PrintWriter outputStream = null;
 try
 {
 inputStream = new BufferedReader(new FileReader("xanadu.txt"));
 outputStream = new PrintWriter(new FileWriter("characteroutput.txt"));
 String l;
 while ((l = inputStream.readLine()) != null)
 {
 outputStream.println(l);
 }
 }
 finally
 {
 if (inputStream != null)
 {
 inputStream.close();
 } !
 if (outputStream != null)
 {
 outputStream.close();
 }
 }
 }
}

CopyLines

15

BufferedReader
± An unbuffered stream can be converted into a

buffered stream using the wrapper idiom:

± The unbuffered stream object is passed to the

constructor for a buffered stream class.
 try
 {
 inputStream = new BufferedReader(new FileReader("input.txt"));
 outputStream = new PrintWriter(
 new BufferedWriter(
 new FileWriter("characteroutput.txt"))); !
 String l; !
 while ((l = inputStream.readLine()) != null)
 {
 outputStream.println(l);
 }
 }

16

Flushing Buffers
± There are four buffered stream classes used to wrap

unbuffered streams:

± BufferedInputStream and BufferedOutputStream for byte

streams,

± BufferedReader and BufferedWriter for character streams.

± It often makes sense to write out a buffer at critical points,
without waiting for it to fill.

± This is known as flushing the buffer.

± Some buffered output classes support autoflush,
specified by an optional constructor argument.

± When autoflush is enabled, certain key events cause the
buffer to be flushed. For example, an autoflush PrintWriter
object flushes the buffer on every invocation of println or
format.

± To flush a stream manually, invoke its flush method.

http://java.sun.com/javase/6/docs/api/java/io/BufferedInputStream.html
http://java.sun.com/javase/6/docs/api/java/io/BufferedOutputStream.html
http://java.sun.com/javase/6/docs/api/java/io/BufferedReader.html
http://java.sun.com/javase/6/docs/api/java/io/BufferedWriter.html

17

Scanning

± Objects of type Scanner break input into tokens and
translate individual tokens according to their data type.

± By default, a scanner uses white space to separate
tokens.

± To use a different token separator, invoke useDelimiter(),
specifying a regular expression.

± Even though a scanner is not a stream, you need to
close it to indicate that you're done with its underlying
stream.

http://java.sun.com/javase/6/docs/api/java/util/Scanner.html

18

ScanFile
public class ScanFile
{
 public static void main(String[] args) throws IOException
 {
 Scanner s = null;
 try
 {
 s = new Scanner(new BufferedReader(
 new FileReader("input.txt")));
 while (s.hasNext())
 {
 System.out.println(s.next());
 }
 }
 finally
 {
 if (s != null)
 {
 s.close();
 }
 }
 }
}

19

Translating Individual Tokens
public class ScanSum
{
 public static void main(String[] args) throws IOException
 {
 Scanner s = null;
 double sum = 0; !
 try
 {
 s = new Scanner(new BufferedReader(new FileReader("usnumbers.txt")));
 while (s.hasNext())
 {
 if (s.hasNextDouble())
 {
 sum += s.nextDouble();
 }
 else
 {
 s.next();
 }
 }
 }
 finally
 {
 s.close();
 }
 System.out.println(sum);
 }
}

20

Translating Individual Tokens

± ScanSum reads a list of double values and adds them
up

± The ScanFile example treats all input tokens as simple
String values.

± Scanner also supports tokens for all of the Java
language's primitive types as well as BigInteger and
BigDecimal.

21

Command Line I/O

± A program is often run from the command line, and
interacts with the user in the command line
environment.

± The Java platform supports this kind of interaction in
two ways:

±Standard Streams

±Console.

22

Standard Streams
± A feature of many operating systems, they read input

from the keyboard and write output to the display.

± They also support I/O on files and between programs

(controlled by the shell).

± The Java platform supports three Standard Streams:

± Standard Input, accessed through System.in;

± Standard Output, accessed through System.out;

± Standard Error, accessed through System.err.

± These objects are defined automatically (do not need to
be opened)

± Standard Output and Standard Error are both for output

± Having error output separately allows the user to divert

regular output to a file and still be able to read error
messages.

23

System.in, System.out, System.err
± For historical reasons, the standard streams are byte

streams (more logically character streams).

± System.out and System.err are defined as PrintStream

objects.

± Although it is technically a byte stream, PrintStream

utilizes an internal character stream object to emulate
many of the features of character streams.

± By contrast, System.in is a byte stream with no
character stream features.

± To utilize Standard Input as a character stream, wrap
System.in in InputStreamReader.

InputStreamReader cin = new InputStreamReader(System.in);

http://java.sun.com/javase/6/docs/api/java/io/PrintStream.html

24

Console
± New for Java 6 - a more advanced alternative to the

Standard Streams

± This is a single pre-defined object of type Console that

has most of the features provided by the Standard
Streams.

± The Console object also provides input and output
streams that are true character streams, through its
reader and writer methods.

± Before a program can use the Console, it must attempt
to retrieve the Console object by invoking
System.console().

± If the Console object is available, this method returns it.

± If it returns NULL, then Console operations are not permitted,

either because the OS doesn't support them, or because the
program was launched in a non-interactive environment.

http://java.sun.com/javase/6/docs/api/java/io/Console.html

25

Password Entry

± The Console object supports secure password entry
through its readPassword method.

± This method helps secure password entry in two ways. it

suppresses echoing, so the password is not visible on the users
screen.

± readPassword returns a character array, not a String, so that the
password can be overwritten, removing it from memory as soon
as it is no longer needed.

26

Password (1)

public class Password
{
 public static void main(String[] args) throws IOException
 {
 Console c = System.console(); !
 if (c == null)
 {
 System.err.println("No console.");
 System.exit(1);
 } !
 String login = c.readLine("Enter your login: ");
 char[] oldPassword = c.readPassword("Enter your old password: ");
 //.. !
 }
}

27

Password (2)
 //..
 if (verify(login, oldPassword))
 {
 boolean noMatch;
 do
 {
 char[] newPassword1 = c.readPassword("Enter your new password: ");
 char[] newPassword2 = c.readPassword("Enter new password again: ");
 noMatch = !Arrays.equals(newPassword1, newPassword2);
 if (noMatch)
 {
 c.format("Passwords don't match. Try again.%n");
 }
 else
 {
 change(login, newPassword1);
 c.format("Password for %s changed.%n", login);
 } !
 Arrays.fill(newPassword1, ' ');
 Arrays.fill(newPassword2, ' ');
 }
 while (noMatch);
 }
 Arrays.fill(oldPassword, ' ');
 }

28

Console Methods

29

Data Streams
± Data streams support binary

I/O of primitive data type
values (boolean, char, byte,
short, int, long, float, and
double) as well as String
values.

± All data streams implement
either the DataInput interface
or the DataOutput interface.

± The most widely-used
implementations of these
interfaces are
DataInputStream and
DataOutputStream.

http://java.sun.com/javase/6/docs/api/java/io/DataInput.html
http://java.sun.com/javase/6/docs/api/java/io/DataOutput.html
http://java.sun.com/javase/6/docs/api/java/io/DataInputStream.html
http://java.sun.com/javase/6/docs/api/java/io/DataOutputStream.html

30

DataStream (1)
public class DataStream
{
 static final String dataFile = "invoicedata";
 static final double[] prices = { 19.99, 9.99, 15.99, 3.99, 4.99 };
 static final int[] units = { 12, 8, 13, 29, 50 };
 static final String[] descs = { "Java T-shirt", "Java Mug",
 "Duke Juggling Dolls",
 "Java Pin", "Java Key Chain"}; !
 public static void main(String[] args) throws IOException
 {
 DataOutputStream out = new DataOutputStream(
 new BufferedOutputStream(new FileOutputStream(dataFile))); !
 for (int i = 0; i < prices.length; i++)
 {
 out.writeDouble(prices[i]);
 out.writeInt(units[i]);
 out.writeUTF(descs[i]);
 }
 out.close(); !
 //…continued

31

DataStream (2)
 DataInputStream in = new DataInputStream(
 new BufferedInputStream(
 new FileInputStream(dataFile)));
 double price;
 int unit;
 String desc;
 double total = 0.0;
 try
 {
 while (true)
 {
 price = in.readDouble();
 unit = in.readInt();
 desc = in.readUTF();
 System.out.format("You ordered %d units of %s at $%.2f%n",
 unit, desc, price);
 total += unit * price;
 }
 }
 catch (EOFException e)
 {
 System.out.println("End of file");
 }
 }
}

32

Data Streams Observations
± The writeUTF method writes out String values in a

modified form of UTF-8.

± A variable-width character encoding that only needs a single

byte for common Western characters.

± Generally, we detects an end-of-file condition by

catching EOFException, instead of testing for an invalid
return value.

± Each specialized write in DataStreams is exactly
matched by the corresponding specialized read.

± Floating point numbers not recommended for monetary
values

± In general, floating point is bad for precise values.

± The correct type to use for currency values is

java.math.BigDecimal.

± Unfortunately, BigDecimal is an object type, so it won't

work with data streams – need Object Streams.

http://java.sun.com/javase/6/docs/api/java/io/EOFException.html
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html

33

Object Streams
± Data streams support I/O of primitive data types, object

streams support I/O of objects.

± A class that can be serialized implements the marker interface

Serializable.

± The object stream classes are ObjectInputStream and

ObjectOutputStream.

± They implement ObjectInput and ObjectOutput, which are

subtypes of DataInput and DataOutput.

± Thus all the primitive data I/O methods covered in Data Streams

are also implemented in object streams.

± An object stream can contain a mixture of primitive and object

values

± If readObject() doesn't return the object type expected,

attempting to cast it to the correct type may throw a
ClassNotFoundException.

http://java.sun.com/javase/6/docs/api/java/io/Serializable.html
http://java.sun.com/javase/6/docs/api/java/io/ObjectInputStream.html
http://java.sun.com/javase/6/docs/api/java/io/ObjectOutputStream.html
http://java.sun.com/javase/6/docs/api/java/io/ObjectInput.html
http://java.sun.com/javase/6/docs/api/java/io/ObjectOutput.html
http://java.sun.com/javase/6/docs/api/java/lang/ClassNotFoundException.html

34

public class ObjectStreams
{
 static final String dataFile = "invoicedata";
 static final BigDecimal[] prices = {new BigDecimal("19.99"),
 new BigDecimal("9.99"),
 new BigDecimal("15.99"),
 new BigDecimal("3.99"),
 new BigDecimal("4.99") };
 static final int[] units = { 12, 8, 13, 29, 50 };
 static final String[] descs = { "Java T-shirt", "Java Mug",
 "Duke Juggling Dolls",
 "Java Pin", "Java Key Chain" };
 public static void main(String[] args)
 throws IOException, ClassNotFoundException
 {
 ObjectOutputStream out = null;
 try
 {
 out = new ObjectOutputStream(
 new BufferedOutputStream(new FileOutputStream(dataFile)));
 out.writeObject(Calendar.getInstance());
 for (int i = 0; i < prices.length; i++)
 {
 out.writeObject(prices[i]);
 out.writeInt(units[i]);
 out.writeUTF(descs[i]);
 }
 }
 finally
 {
 out.close();
 }
 //…
 }

ObjectSteams

35

 ObjectInputStream in = null;
 try
 {
 in = new ObjectInputStream(
 new BufferedInputStream(new FileInputStream(dataFile)));
 Calendar date = null;
 BigDecimal price;
 int unit;
 String desc;
 BigDecimal total = new BigDecimal(0); !
 date = (Calendar) in.readObject(); !
 System.out.format("On %tA, %<tB %<te, %<tY:%n", date);
 try
 {
 while (true)
 {
 price = (BigDecimal) in.readObject();
 unit = in.readInt();
 desc = in.readUTF();
 System.out.format("You ordered %d units of %s at $%.2f%n",unit, desc, price);
 total = total.add(price.multiply(new BigDecimal(unit)));
 }
 }
 catch (EOFException e)
 {
 }
 System.out.format("For a TOTAL of: $%.2f%n", total);
 }
 finally
 {
 in.close();
 }

ObjectStreams(2)

36

readObject() and writeObject()
± The writeObject and readObject methods contain some

sophisticated object management logic.

± This particularly important for objects that contain

references to other objects.

± If readObject is to reconstitute an object from a stream,

it has to be able to reconstitute all the objects the
original object referred to.

± These additional objects might have their own references, and

so on.

± In this situation, writeObject traverses the entire web of

object references and writes all objects in that web onto
the stream. Thus a single invocation of writeObject can
cause a large number of objects to be written to the
stream.

37

± Suppose:

± If writeObject is invoked to write a single object named a.

± This object contains references to objects b and c,

± while b contains references to d and e.

± Invoking writeobject(a) writes a and all the objects necessary
to reconstitute a

± When a is read by readObject, the other four objects are
read back as well, and all the original object references are
preserved.

38

Streams in AgileLab05
public class Pim implements IPim
{
 private AddressBookMap addressBook; !
 public Pim()
 {
 newPim();
 } !
 public IAddressBook getAddressBook()
 {
 return addressBook;
 } !
 public void newPim()
 {
 addressBook = new AddressBookMap();
 } !
 //…
}

39

open
 public boolean open(String filename)
 {
 boolean success = false;
 try
 {
 File source = new File(filename);
 ObjectInputStream is = new ObjectInputStream(new FileInputStream(source));
 addressBook = (AddressBookMap) is.readObject();
 is.close();
 success = true;
 }
 catch (ClassNotFoundException e)
 {
 e.printStackTrace();
 }
 catch (IOException e)
 {
 e.printStackTrace();
 }
 return success;
 }

40

save
 public boolean save(String filename)
 {
 boolean success = false;
 try
 {
 File destination = new File(filename);
 ObjectOutputStream os
 = new ObjectOutputStream(new FileOutputStream(destination));
 os.writeObject(addressBook);
 os.close();
 success = true;
 }
 catch (IOException e)
 {
 e.printStackTrace();
 }
 return success;
 }

41

Serializable Marker Interface

± The serialVersionUID should be incremented if the class structure
changes.

 public class AddressBookMap implements IAddressBook, Serializable
 {
 private static final long serialVersionUID = 1L;
 private Map<String, IContact> contacts;
 //...
 }

 public class Contact implements IContact, Serializable
 {
 private static final long serialVersionUID = 1L;
 //...
 }

42

transient
± If a field is to be excluded from the serialisation

mechanism it can be marked “transient”.

± writeObject() will ignore these fields and readObject()

will not attempt to read them.

 public class AddressBookMap implements IAddressBook, Serializable
 {
 private static final long serialVersionUID = 1L;
 private Map<String, IContact> contacts;
 private transient Map<String, IContact> removedContacts;
 //...
 }

43

Abstract the Mechanism

± Defining this interface will allow us to build different
serialization strategies.

± We can decide which to use at compile time, or at run
time.

public interface ISerializationStrategy
{
 void write(String filename, Object obj) throws Exception;
 Object read(String filename) throws Exception;
}

44

Binary Strategy
public class BinarySerializer implements ISerializationStrategy
{
 public Object read(String filename) throws Exception
 {
 ObjectInputStream is = null;
 Object obj = null; !
 try
 {
 is = new ObjectInputStream(new BufferedInputStream(
 new FileInputStream(filename)));
 obj = is.readObject();
 }
 finally
 {
 if (is != null)
 {
 is.close();
 }
 }
 return obj;
 }
 //..
}

Binary Strategy (contd.)

45

public class BinarySerializer implements ISerializationStrategy
{
 //.. !
 public void write(String filename, Object obj) throws Exception
 {
 ObjectOutputStream os = null;
 try
 {
 os = new ObjectOutputStream(new BufferedOutputStream(
 new FileOutputStream(filename)));
 os.writeObject(obj);
 }
 finally
 {
 if (os != null)
 {
 os.close();
 }
 }
 }
}

XML Strategy

46

public class XMLSerializer implements ISerializationStrategy
{
 public Object read(String filename) throws Exception
 {
 ObjectInputStream is = null;
 Object obj = null; !
 try
 {
 XStream xstream = new XStream(new DomDriver());
 is = xstream.createObjectInputStream(new FileReader(filename));
 obj = is.readObject();
 }
 finally
 {
 if (is != null)
 {
 is.close();
 }
 }
 return obj;
 }
 //...
}

XML Strategy (contd.)

47

public class XMLSerializer implements ISerializationStrategy
{
 //...
 public void write(String filename, Object obj) throws Exception
 {
 ObjectOutputStream os = null; !
 try
 {
 XStream xstream = new XStream(new DomDriver());
 os = xstream.createObjectOutputStream(new FileWriter(filename));
 os.writeObject(obj);
 }
 finally
 {
 if (os != null)
 {
 os.close();
 }
 } !
 }
}

Except where otherwise noted, this content is
licensed under a Creative Commons
Attribution-NonCommercial 3.0 License.
!
For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

