
Produced
by

Agile Software Development

Eamonn de Leastar (edeleastar@wit.ie)

mailto:edleastar@wit.ie

JUnit Annotations

Test Driven Development Introduction

• Annotations provide data about a program that is not part of the program
itself. They have no direct effect on the operation of the code they annotate.

• Annotations have a number of uses, among them:

• Information for the compiler — Annotations can be used by the compiler to
detect errors or suppress warnings.

• Compiler-time and deployment-time processing — Software tools can
process annotation information to generate code, XML files, and so forth.

• Runtime processing — Some annotations are available to be examined at
runtime.

• Annotations can be applied to a program's declarations of classes, fields,
methods, and other program elements

3

Using Annotations

• The annotation appears first,
often (by convention) on its own
line, and may include elements
with named or unnamed values.

• The annotation must itself be
already defined and explicitly
imported if necessary:

• Annotations are defined using a
special syntax:

4

@Author(name = "Joe Kelly", date = "3/27/2003")	
public class MyClass	
{	
 //...	
}	

import documentation.Author;

package documentation;	
!
public @interface Author 	
{	
 String name();	
 String date();	
}	

Built in Annotations

• There are three annotation types that are predefined by the language
specification itself:

• @Deprecated— indicates that the marked element is deprecated and
should no longer be used. The compiler generates a warning whenever a
program uses a method, class, or field with the @Deprecated annotation.

• @Override annotation informs the compiler that the element is meant to
override an element declared in a superclass. It not required to use this
annotation when overriding a method, it helps to prevent errors. If a
method marked with @Override fails to correctly override a method in one
of its superclasses, the compiler generates an error.

• @SuppressWarnings annotation tells the compiler to suppress specific
warnings that it would otherwise generate

5

http://java.sun.com/javase/7/docs/api/java/lang/Override.html
http://java.sun.com/javase/7/docs/api/java/lang/SuppressWarnings.html

JUnit 3
• The previous slides used JUnit 3

conventions.

• Test class extend TestCase

• setUp/tearDown are overridden
from TestCase

• test methods must begin with
“test” word.

6

import junit.framework.TestCase;	
!
public class TestLargest extends TestCase	
{	
 private int[] arr;	
 	
 public TestLargest (String name)	
 {	
 super(name);	
 }	
!
 public void setUp()	
 {	
 arr = new int[] {8,9,7};	
 }	
 	
 public void tearDown()	
 {	
 arr = null;	
 }	
 	
 public void testOrder ()	
 {	
 assertEquals(9, Largest.largest(arr));	
 }	
 	
 public void testOrder2 ()	
 {	
 assertEquals(9, Largest.largest(new int[] { 9, 8, 7 }));	
 assertEquals(9, Largest.largest(new int[] { 8, 9, 7 }));	
 assertEquals(9, Largest.largest(new int[] { 7, 8, 9 }));	
 }	
}

JUint 4 Uses
Annotations

• @Before - run before each
test

• @After - run after each test

• @Test - the test itself

• No need to extend TestCase

7

import org.junit.After;	
import org.junit.Before;	
import org.junit.Test;	
!
import static org.junit.Assert.fail;	
import static org.junit.Assert.assertTrue;	
import static org.junit.Assert.assertEquals;	
!
public class TestLargest 	
{	
 private int[] arr;	
 	
 @Before	
 public void setUp() 	
 {	
 arr = new int[] {8,9,7};	
 }	
!
 @After	
 public void tearDown()	
 {	
 arr = null;	
 }	
 	
 @Test	
 public void order ()	
 {	
 assertEquals(9, Largest.largest(arr));	
 }	
 	
 @Test	
 public void dups ()	
 {	
 assertEquals(9, Largest.largest(new int[] { 9, 7, 9, 8 }));	
 }

Exceptions: JUnit 3 vs JUnit 4

• Use @Test (expected = ...) to specify exception

• Simpler, less verbose

8

 public void testEmpty ()	
 {	
 try	
 {	
 Largest.largest(new int[] {});	
 fail("Should have thrown an exception");	
 }	
 catch (RuntimeException e)	
 {	
 assertTrue(true);	
 }	
 }

 @Test (expected = RuntimeException.class)	
 public void testEmpty ()	
 {	
 Largest.largest(new int[] {});	
 }

Except where otherwise noted, this content is
licensed under a Creative Commons Attribution-
NonCommercial 3.0 License.

!
For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

