
Produced
by

Department of Computing, Maths & Physics

Waterford Institute of Technology
http://www.wit.ie

http://elearning.wit.ie

Agile Software Development

Eamonn de Leastar (edeleastar@wit.ie)

mailto:edleastar@wit.ie

Maven

• Objectives:

• Provide a standard development infrastructure across projects

• Make the development process transparent

• Decrease training for new developers.

• Bring together tools in a uniform way

• Prevent inconsistent setups

• Divert energy to application development activities

• Maven is a process of applying patterns to a build infrastructure in order to
provide a coherent view of software projects

2

Maven

• Principles:

• Convention over configuration

• Declarative execution

• Reuse of build logic

• Coherent organization of dependencies

Convention over configuration
• Provide sensible default strategies for the most common build tasks

• The primary conventions to promote a familiar development environment
are:

1. Standard directory layout for projects

2. Standardised set of build phases – lifecycle phases

3. A single Maven project produces a single output/artifact

4. Standard naming conventions

• Conventions are Maven’s understanding of how a project is typically built.
This built-in project knowledge simplifies and facilitates project builds.

• Leverages its built-in project knowledge to help users understand a complex
project's structure and potential variations in the build process.

Reuse of build logic

• Reuse of build logic principle:

• Maven encapsulating build logic into modules called plugins.

• A plugin’s components, called mojos, perform build tasks.

• MOJO - Maven plain Old Java Objects

• Maven acts as a framework which coordinates the execution of plugins in
a well defined way.

• Some plugins are standard, others are downloaded on demand.

Declarative Execution

• Ant’s typical target names are standardised into a set of well-defined and
well-known build lifecycle phases.

• A lifecycle phase invokes the relevant plugins (the mojos) to do the work.

• The phase to plugin bindings are hardwired (for standard plugins).

• User configures a plugin declaratively in the POM (Project Object Model) file.

• Configuration only necessary for non-standard cases

Declarative Execution

plugins

user
e.g. mvn install

Maven generate- 
sources

compile

test

install

deploy

package

integration- 
test

Well-known phases

mojo

mojo

mojo

mojo

mojo
bindings

Declarative Execution

• When user invokes a lifecycle phase, all its predecessors are also executed, if
necessary, e.g. mvn package.

• You can also invoke plugins directly.

Format: mvn plugin-name:goal

e.g. mvn jetty:run

Declarative Execution

• The POM file (pom.xml) is Maven's description of a single project

• It drives Maven’s execution for a project

• e.g configuring a plugin for a particular phase.

• Contains metadata about the project

• Location of directories, Developers/Contributors, Extra plugins required,
Special plugin configuration, Jars required (3rd party and in-house),
Repositories to search for plugins/jars, etc.

• A project’s POM inherits from the Super POM.

• All standard project information (e.g. directory structure) is held in the
Super POM (principle).

Minimalist POM
<project>

 <modelVersion>4.0.0</modelVersion>

 <groupId>com.mycompany.app</groupId>
 <artifactId>my-app</artifactId>
 <packaging>jar</packaging>
 <version>1.0</version>

 <dependencies>

 <dependency>
 <groupId>com.thoughtworks.xstream</groupId>
 <artifactId>xstream</artifactId>
 <version>1.3.1</version>
 </dependency>

 </dependencies>

</project>

Minimalist POM elements

• groupId - indicates the unique identifier of the organization or group that
created the project. Typically based on the fully qualified domain name of the
organization

• artifactId - indicates the unique base name of the primary artifact being
generated by this project. A typical artifact produced by Maven would have
the form <artifactId>-<version>.<extension> (for example, myapp-1.0.jar)

• packaging - indicates the package format to be used for this artifact (JAR,
WAR, EAR, etc.). It also indicates a specific life cycle to use as part of the
build process.

Coherent organization of dependencies

• Three related concepts: Artifact; Dependencies; Repositories

<project>
	 ………
 <dependencies>

 <dependency>
 <groupId>com.thoughtworks.xstream</groupId>
 <artifactId>xstream</artifactId>
 <version>1.3.1</version>
 </dependency>

 </dependencies>

</project>

 This project has a dependency
 on version 1.3.1 of the artifact

 with id xstream, produced by the
 com.thoughtworks.xstream group.

Coherent organization of dependencies

• All artifacts/dependencies are stored in repositories

• Local and remote repositories

• The local repository is searched first, then remote ones

• Dependencies are automatically downloaded (from remote repositories) and
installed (in local repository) for future use

• Maven knows about some remote repositories, e.g.

http://ibiblio.org/maven2

• Other remote repositories can be listed in the project POM or in Maven’s
configuration file (setting.xml)

Local repositories.

• After installing and running Maven for
the first time a local repository is
automatically created and populated
with some standard artifacts

• Default Local repository location:
Home/.m2/repository

• Plugins are also stored in repositories.

• In theory a repository is an abstract
storage mechanism, but in practice it is
a directory structure in your file system

Repository structure.

• Repository structure centered around
dependency coordinates schema.

• Maven uses artifact’s id, group id. and
version to navigate to the correct
folder.

• If the groupId is a fully qualified domain
name such as x.y.z then it is fully
expanded.

The full picture.

Archetypes.
• An archetype is a template project structure

• Many archetype options:

• maven-archetype-webapp – Web application (WAR) project template

• maven-archetype-j2ee-simple – J2EE project (EAR) with directories and
subprojects for the EJBs, servlets, etc.

• maven-archetype-quickstart (default) – simple Java project (JAR)

• Create a new project folder structure with the archetype plugin, invoking the
create goal

mvn archetype:create
	 -DgroupId=[your project's group id]
	 -DartifactId=[your project's artifact id]
	 -DarchetypeArtifactId=[artifact type]

Quickstart archetype.

• Folder structure for ‘quickstart’ archetype

• The base directory name is taken from artifactid.

• A minimal POM is included in base directory.

Except where otherwise noted, this content is
licensed under a Creative Commons Attribution-
NonCommercial 3.0 License.

For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

