
Produced
by

Department of Computing, Maths & Physics

Waterford Institute of Technology
http://www.wit.ie

http://elearning.wit.ie

Agile Software Development

Eamonn de Leastar (edeleastar@wit.ie)

mailto:edleastar@wit.ie

SOLID Principles

• The Single Responsibility Principle 	
• A class should have one, and only one, reason to change.

• The Open Closed Principle 	
• You should be able to extend a classes behavior, without modifying

it.
• The Liskov Substitution Principle 	

• Derived classes must be substitutable for their base classes.
• The Interface Segregation Principle

• Make fine grained interfaces that are client specific.
• The Dependency Inversion Principle 	

• Depend on abstractions, not on concretions.

Source

± Agile principles, and the fourteen practices of Extreme Programming
± Spiking, splitting, velocity, and planning iterations and releases
± Test-driven development, test-first design, and acceptance testing
± Refactoring with unit testing
± Pair programming
± Agile design and design smells
± The five types of UML diagrams and how to use them effectively
± Object-oriented package design and design patterns
± How to put all of it together for a real-world project

Source

http://en.wikipedia.org/wiki/Solid_(object-oriented_design)

http://blog.objectmentor.com/articles/2009/02/12/getting-a-solid-start

http://en.wikipedia.org/wiki/Solid_(object-oriented_design)
http://blog.objectmentor.com/articles/2009/02/12/getting-a-solid-start

Solid Principles in Poster Form...

SOLID Motivational Posters, by Derick Bailey, is
licensed under a Creative Commons Attribution-

Share Alike 3.0 United States License.

http://blogs.msdn.com/b/cdndevs/archive/2009/07/15/
the-solid-principles-explained-with-motivational-

posters.aspx

http://lostechies.com/blogs/derickbailey/archive/2009/02/11/solid-development-principles-in-motivational-pictures.aspx
http://creativecommons.org/licenses/by-sa/3.0/us/
http://blogs.msdn.com/b/cdndevs/archive/2009/07/15/the-solid-principles-explained-with-motivational-posters.aspx

SRP: The Single Responsibility Principle

• THERE SHOULD NEVER BE MORE THAN ONE REASON
FOR A CLASS TO CHANGE.
!
• Each responsibility is an axis of change.
• When the requirements change, that change will be manifested through

a change in responsibility amongst the classes.
• If a class assumes more than one responsibility, then there will be more

than one reason for it to change.
• Changes to one responsibility may impair or inhibit the class’ ability to

meet the others.

Example
• The Rectangle class has two methods:

• one draws the rectangle on the screen
• the other computes the area of the rectangle.

• Two applications use this class:
• one application uses Rectangle to help it with the mathematics of

geometric shapes.
• the other uses the class to render a Rectangle on a window.

SRP Violation

• Rectangle has two responsibilities:
• provide a mathematical model of the geometry of a rectangle.
• render the rectangle on a graphical user interface.
!

• Violation of SRP:
• the GUI must be included in the in the computational geometry

application.
• the class files for the GUI have to be deployed to the target platform.

• if a change to the Graphical Application causes the Rectangle to
change for some reason, that change may force us to rebuild, retest,
and redeploy the Computational Geometry Application.

SRP Fix
• Separate the two responsibilities into two separate classes

• Moves the computational portions of Rectangle into the
GeometricRectangle class.

• Now changes made to the way rectangles are rendered
cannot affect the ComputationalGeometry Application.

What is a Responsibility?

• “A reason for change.”
• If you can think of more than one motive for changing a

class, then that class has more than one responsibility.

interface Modem
{
 void dial(String pno);
 void hangup();
 void send(char c);
 char recv();
}

Modem Responsibilities

• Two responsibilities:
• connection management. (dial and hangup functions)
• data communication (send and recv functions)

• They have little in common
• may change for different reason
• will be called from different parts of the applications

• They will change for different reasons.

interface Modem
{
 void dial(String pno);
 void hangup();
 void send(char c);
 char recv();
}

Separation of Responsibilities

• Separate the two responsibilities into two separate
interfaces.

• However, we may couple the two responsibilities into a single
Modem Implementation class.

• This is not necessarily desirable, but it may be necessary. (for
implementation purposes)

SRP Violation?

• Coupling persistence services (store) with business rules
(calculatePay) violates SRP

Separate Concerns

Example - Personal Information Manager

• Design an Application to manage a contact list.
• It should support:

• Console based UI
• Load/save to/from a file on disk
• Simple reports and search functions.

AddressBook

• Propose two classes:
• Contact - to represent each contact
• AddressBook - to incorporate

• serialization
• reporting
• UI
• etc…

• Violates SRP as AddressBook has multiple reasons to change
• Data structure change (HashMap to TreeMap)
• Serialization mechanism (binary to XML)
• Alternative reports (different formats and content)
• Command line syntax changes

Refactor Addressbook

• AddressBook responsible for contact data structure
• ContactReporter responsible for format and content of reports
• SerializationStrategy responsible for persistence
• Pim responsible for binding address book to serialization mechanism

– and for exposing coherent top level functionality
• PimConsoleApp responsible binding an running application to an

IPim.

Pacemaker - package responsibilities

information
model for the
app

transform the
model into
various formats

general purpose
application
independent
utilities

Application
services + user
interface

Represent
individual
locations

Represent
individual
Activities

Represent
individual
Users

Centralise data/
time formatting
for application Encapsulate

data structure
serialisation

Specialise
serialisation
for XML

Specialise
serialisation
for JSON

Encapsulate
parsing
(transformation)
requirements for
app

Specialise
parsing for Ascii
(using btc-ascii
component)

Specialise
parsing for
JSON (using
jackson)

Represent
responses from an
application to
requests from
clients (use HTTP
terminology)

Implement the
core application
features as
represented by the
Model.

Expose the core
application
features to
clients

Deliver a
console user
experience

Deliver a
console user
experience

Expose the core
application
features to clients

Implement the
core application
features as
represented by the
Model.

Represent
responses from an
application to
requests from
clients(information
modelled for the
app on HTTP)

SRP Summary

• Changes in requirements are manifested as changes in
class responsibilities

• Therefore a ‘cohesive’ responsibility is a single axis of
change –requirement changes often are restricted to a
few cohesive responsibilities (in a reasonably designed
system)

• Thus, to avoid coupling responsibilities that change for
different reasons, a class should have only one
responsibility, one reason to change.

• Violation of SRP causes spurious dependencies between
modules that are hard to anticipate, in other words fragility

Except where otherwise noted, this content is
licensed under a Creative Commons
Attribution-NonCommercial 3.0 License.

!
For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

