
Produced
by

Department of Computing, Maths & Physics

Waterford Institute of Technology
http://www.wit.ie

http://elearning.wit.ie

Agile Software Development

Eamonn de Leastar (edeleastar@wit.ie)

mailto:edleastar@wit.ie

Writing JUnit Tests

Structuring Tests

• Adopt Naming conventions

• A method named create-Account to be tested, then test method
might be named testCreateAccount.

• The method test-CreateAccount will call createAccount with the
necessary parameters and verify that createAccount works as
advertised.

• Many test methods that exercise createAccount.

• Distinguish between Testing vs Production Code

• The test code is for our internal use only - Customers or endusers
will never see it or use it.

�3

Test Code Responsibilities

• 4 steps:

1.Setup all conditions needed for testing (create any required objects,
allocate any needed resources, etc.)

2.Call the method to be tested

3. Verify that the method to be tested functioned as expected

4. Clean up after itself

• Never actually run the production code directly; at least, not the way a user
would.

• Instead, run the test code, which in turn exercises the production code under
very carefully controlled conditions.

�4

JUnit Asserts

• Methods that assist in determining whether a method under test is performing
correctly or not.

• Generically called asserts.

• The developer asserts that some condition is true; that two bits of data are
equal, or not, etc...

• Will record failures (when the assertion is false) or errors (when an unexpected
exception occurs), and report these through the JUnit classes.

• The GUI version will show a red bar and supporting details to indicate a
failure

• Asserts are the fundamental building block for unit tests; the JUnit library
provides a number of different forms of assert.

�5

assertEquals

• assertEquals([String message], expected, actual)

• expected is a value predicted to be correct (typically hard-coded),

• actual is a value actually produced by the code under test.

• message is an optional and will be reported in the event of a failure.

• Any kind of object may be tested for equality; the appropriate equals method
will be used for the comparison (String.equal for instance).

• Be aware that the equals method for native arrays, however, does not
compare the contents of the arrays, just the array reference itself

�6

assertEquals (with Tolerance)

• Computers cannot represent all foating-point numbers exactly, and will
usually be off a little bit.

• Thus using assert to compare floating point numbers (floats or doubles in
Java), specify one additional piece of information, the tolerance.

• assertEquals([String message], expected, actual, tolerance)

• eg

• assertEquals("Should be 3 1/3", 3.33, 10.0/3.0, 0.01);

�7

assertNull / assertNotNull

• assertNull([String message], java.lang.Object object)

• assertNotNull([String message], java.lang.Object object)

• Asserts that the given object is null (or not null), failing otherwise.

�8

assertTrue / assertFalse

• assertTrue([String message], boolean condition)

• Asserts that the given boolean condition is true, otherwise the test fails.

• If test code is littered with the following:

• assertTrue(true);

• it suggests that the construct is used to verify some sort of branching or
exception logic, it's probably a bad idea and may indicate unnecessarily
complex test logic.

• assertFalse([String message], boolean condition)

• Asserts that the given boolean condition is false, otherwise the test fails.

�9

assertSame / assertNotSame

• assertSame([String message], expected, actual)

• Asserts that expected and actual refer to the same object, and fails the test if
they do not.

• assertNotSame([String message], expected, actual)

• Asserts that expected and actual do not refer to the same object, and fails the
test if they are the same object..

�10

fail

• fail([String message])

• Fails the test immediately, with the optional message. Often used to mark
sections of code that should not be reached (for instance, after an exception
is expected).

�11

Using asserts

• Usually have multiple asserts in a given test method, as you prove various
aspects and relationships of the method(s) under test.

• When an assert fails, that test method will be aborted and the remaining
assertions in that method will not be executed this time

• Normally expect that all tests pass all of the time.

• In practice, that means that when a bug introduced, only one or two tests fail.

• Developer should NOT continue to add features when there are failing tests

�12

JUnit Framework

• The import statement brings in the
necessary JUnit methods/
annotations.

• Individual tests are marked with the
@Test annotation against public
methods.

�13

import static org.junit.Assert.assertEquals;	
import org.junit.Test;	
!
public class TestClassOne	
{	
 	
 @Test	
 public void testAddition ()	
 {	
 assertEquals(4, 2 + 2);	
 }	
!
 @Test	
 public void testSubtraction ()	
 {	
 assertEquals(0, 2 - 2);	
 }	
}

@Before / @After

• Each test should run independently of every
other test; this allows any individual test to
be run at any time, in any order.

• This requires ability to reset some parts of
the testing environment in between tests,
and/or clean up after a test has run.

• @Before / @After annotations ensure that
these methods are called before and after
each test is executed.

�14

public class TestLargest 	
{	
 private int[] arr;	
 	
 @Before	
 public void setUp() 	
 {	
 arr = new int[] {8,9,7};	
 }	
!
 @After	
 public void tearDown() 	
 {	
 arr = null;	
 }	
}

@Before / @After
Example

�15

public class TestDB extends TestCase 	
{	
 private Connection dbConn;	
!
 @Before	
 public void setUp() 	
 {	
 dbConn = new Connection("oracle", 1521, "fred", "foobar");	
 dbConn.connect();	
 }	
!
 @After	
 public void tearDown() 	
 {	
 dbConn.disconnect();	
 dbConn = null;	
 }	
!
 @Test	
 public void testAccountAccess() // Uses dbConn 	
 { 	
 }	
!
 @Test	
 public void testEmployeeAccess() // Uses dbConn	
 {	
 }	
}

@BeforeClass /
@AfterClass

�16

public class TestDB extends TestCase 	
{	
 private Connection dbConn;	
!
 @Before	
 public void setUp() 	
 {	
 dbConn = new Connection("oracle", 1521, "fred", "foobar");	
 dbConn.connect();	
 }	
!
 @After	
 public void tearDown() 	
 {	
 dbConn.disconnect();	
 dbConn = null;	
 }	
!
 @BeforeClass	
 public static void populateDB() 	
 { 	
 }	
!
 @AfterClass	
 public static void depopulateDB() 	
 {	
 }	
}

• One Time set up for
full TestCase

• Called once before all
tests are executed

• Called once after all
tests have executed

• Does not effect
@Before / @After

JUnit Test Composition

• JUnit runs all of the @test
annotated methods
automatically.

• Individual tests can be removed
temporarily via the @Ignore
annotation

• testLongRunner uses a brute-
force algorithm to find the
shortest route for a traveling
salesman. Removed from default
tests

�17

public class TestClassTwo	
{	
 // This one takes a few hours... 	
 @Ignore	
 @Test	
 public void testLongRunner ()	
 {	
 TSP tsp = new TSP(); // Load with default cities	
 assertEquals(2300, tsp.shortestPath(50)); // top 50	
 }	
!
 @Test	
 public void testShortTest ()	
 {	
 TSP tsp = new TSP(); // Load with default cities	
 assertEquals(140, tsp.shortestPath(5)); // top 5	
 }	
!
 @Test	
 public void testAnotherShortTest ()	
 {	
 TSP tsp = new TSP(); // Load with default cities	
 assertEquals(586, tsp.shortestPath(10)); // top 10	
 }	
!
}

Composed Tests

• Higher-level test that is composed of both
of two other test classes

• Thee following individual test methods
will be run:

• testAddition() from TestClassOne

• testSubtraction() from TestClassOne

• testShortTest() from TestClassTwo

• testAnotherShortTest() from TestClassTwo

�18

import org.junit.AfterClass;	
import org.junit.BeforeClass;	
import org.junit.runner.RunWith;	
import org.junit.runners.Suite;	
!
!
@RunWith(Suite.class)	
@Suite.SuiteClasses({TestClassOne.class, 	
 TestClassTwo.class})	
!
public class MetaTest	
{	
!
}

Composed Tests with @BeforeClass / @AfterClass

• One time initialization in
MetaTest.

• Then all (non Ignored) tests in
TestClassOne and
TestClassTwo

• All @Before / @After methods
in these classes executed

• All @BeforeClass /
@AfterClass methods also
executed.

�19

@RunWith(Suite.class)	
@Suite.SuiteClasses({TestClassOne.class,
TestClassTwo.class})	
!
public class MetaTest	
{	
!
 @BeforeClass	
 public static void initialize()	
 {	
 //...	
 }	
 	
 @AfterClass	
 public static void terminate()	
 {	
 //...	
 }	
}

JUnit Custom Asserts

• The standard asserts
that JUnit provides
are usually sufficient
for most testing.

• Custom asserts can
be introduced by
subclassing
TestCase and using
the subclass for all
testing.

�20

public class ProjectTest 	
{	
!
 public void assertEvenDollars (String message, Money amount)	
 {	
 assertEquals(message, amount.asDouble() - 	
 (int) amount.asDouble(), 0.0,	
 0.001);	
 }	
!
 public void assertEvenDollars (Money amount)	
 {	
 assertEvenDollars("", amount);	
 }	
!
}

JUnit & Exceptions

• There are two kinds of exceptions worth noting:

Case 1. Expected exceptions resulting from a test

Case 2. Unexpected exceptions from something that's gone
horribly wrong

• For case 2 - JUnit will catch these and provide a complete stack
trace.

�21

Expected Exceptions

• For case 1- sometimes in a test,
need to verify that the method
under test has actually thrown
an exception

• “expected” annotation
parameter declares that the
specified exception should have
been thrown.

�22

 @Test	
 public void testEmpty ()	
 {	
 try	
 {	
 Largest.largest(new int[] {});	
 fail("Should have thrown an exception");	
 }	
 catch (RuntimeException e)	
 {	
 assertTrue(true);	
 }	
 }

 @Test (expected = RuntimeException.class)	
 public void testEmpty ()	
 {	
 Largest.largest(new int[] {});	
 }

Except where otherwise noted, this content is
licensed under a Creative Commons Attribution-
NonCommercial 3.0 License.

!
For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

