Agile Software Development

Eamonn de Leastar (edeleastar@wit.ie)

Department of Computing, Maths & Physics
Waterford Institute of Technology

http://www.wit.ie

http://elearning.wit.ie

Waterford Institute of Technology o el-eaming_
support unit

p}- g INSTIMJID TECNEOLAIOCHTA PHORT LARGE
Ah ‘..':4-"


mailto:edleastar@wit.ie

“The

Right-

=10

D

The
Pragmatic

Programmers

Pra%matic
nit Testing

In Java with JUnit

The Pragmatic Starter Kit - Volume Il

Andrew Hunt David Thomas

.




Right B.I.C.E.P.

- Guidelines of some areas that might be important to test:
* Right - Are the results right?

- B - Are all the boundary conditions CORRECT?

- |- Can you check inverse relationships?

« C - Can you cross-check results using other means?
- E - Can you force error conditions to happen?

- P - Are performance characteristics within bounds?



Right

« Key question : If the code ran correctly, how would the developer know?

- If this question cannot be answered satisfactorily, then writing the code or
the test may be a complete waste of time.

- Does that mean code cannot be written until all the requirements are in?

 No. If the requirements are truly not yet known, or complete, you
developer will extrapolate as a stake in the ground.

- They may not be correct from the user's point of view, but the developer
now knows what he/she thinks the code should do, and so you can

answer the question.

 The definition of correct may change over the lifetime of the code in question,
but at any point, developer should be able to prove that it's doing what he/
she thinks it should be doing.



3.

Boundary Conditions

|dentifying boundary
conditions is one of the most
valuable parts of unit testing,
because this is where most
bugs generally live - at the
edges

public void testOrder ()
{

assertEquals(9, Largest.largest(new
assertEquals(9, Largest.largest(new
assertEquals(9, Largest.largest(new

}

public void testDups ()
{

assertEquals(9, Largest.largest(new

}

public void testOne ()
{

assertEquals(l, Largest.largest(new

}

public void testNegative ()

{

int[] neglList = new int[] { -9, -8,

int[] {9, 8,
int[] { 8, 9,
intl] {7,

int[] {9,

intl] {1 1));

-7},

assertkEquals(-7, Largest.largest(neglList));

}

public void testEmpty (O

{
try

{
Largest.largest(new int[] {});

fail("Should have thrown an exception");

}

catch (RuntimeException e)

{

assertTrue(true);

}
}

7 3));
7 3));
9 1)J;

9, 8 1));




—xample Boundaries:

- Totally bogus or inconsistent input values, such as a file name of ""W:Xn&Gi/
w>g/h#WQ@".

- Badly formatted data, such as an e-mail address without a top-level domain
("fred@foobar.").

- Empty or missing values (such as 0, 0:0, "", or null).

 Values far in excess of reasonable expectations, such as a person's age of
10,000 years.

 Duplicates in lists that shouldn't have duplicates.

 Ordered lists that aren't, and vice-versa. Try handing a pre-sorted list to a sort
algorithm, for instance, or even a reverse-sorted list.

- Things that arrive out of order, or happen out of expected order, such as
trying to print a document before logging in.



Boundary Conditions C.O.

control of the code itself?

etc.)?

time? In time?

3.

3.

Cardinality - Are there exactly enough values?

C.T.

Conformance - Does the value conform to an expected format?
Ordering - Is the set of values ordered or unordered as appropriate?
Range - Is the value within reasonable minimum and maximum values?

Reference - Does the code reference anything external that isn't under direct

Existence - Does the value exist (e.g., is non-null, nonzero, present in a set,

Time (absolute and relative) - Is everything happening in order? At the right



. Check Inverse Relationships

- Some methods can be checked by
applying their logical inverse.

- E.g check a method that calculates a — .
_ public void testSquareRootUsinglnverse()
square root by squaring the result, and {
testing that it is tolerably close to the double x = mySquareRoot(4.0);
.. assertequals(4.0, x * x, 0.0001);
original number: )

« Or -check that some data was successfully
Inserted into a database by then searching
for it.



C. Cross-check Using Other Means

Where possible, use a different source for
the inverse test (bug could be in original and
In inverse)

Usually there is more than one way to
calculate some quantity;

Pick one algorithm over the others because it
performs better, or has other desirable
characteristics - use that one in production.

Use one of the other versions to cross-check
our results in the test system.

Especially helpful when there's a proven,
known way of accomplishing the task that
happens to be too slow or too complex to
use in production code.

public void testSquareRootUsingStd()
{
double number = 3880900.0;
double root1 = mySquareRoot(number);
double root2 = Math.sqgrt(number);
assertEquals(root2, root1, 0.0001);

}




Cross-check Using Other Means (2)

- Another example: a library database system:

- The number of copies of a particular book should always balance. (number
of copies that are checked out plus the number of copies sitting on the
shelves should always equal the total number of copies).

- Separate pieces of data, and may even be reported by objects of different
classes, but they still have to agree, and so can be used to cross-check
one another.

10



—. Force Error Conditions

* In the real world, errors happen: disks fill up, network lines drop, e-mail goes
down, and programs crash. Developer should test that code handles many
of these real world problems by forcing errors to occur.

« That's easy enough to do with invalid parameters and the like, but to
simulate specific network errors without unplugging any cables takes some
special techniques.

 For instance:
* Running out of memory
* Running out of disk space
« Network availability and errors
- System load
 Limited color palette
 Very high or very low video resolution

11



P Performance Characteristics

- Performance characteristics - does not necessarily mean measuring
performance itself - but rather trends as input sizes grow, as problems
become more complex.

- The objective not to objectively measure performance, but to incorporate
general tests just to make sure that the performance curve remains stable

12



Performance
example

A filter that identifies web
sites to block.

The code may works well
with a few dozen sample
sites, but will it work as well
with 10,0007 100,000.

This test may take 6-7
seconds to run, so may run
only nightly.

See JUnitPerf for tools to
simplify such tests.

public void testURLFilter()

{

Timer timer = new Timer();

String naughty_url = "http://www.XXXXXXXXXXX.com'

// First, check a bad URL against a small list
URLFilter filter = new URLFilter(small_l1ist);
timer.start();

filter.check(naughty_url);

timer.end();

assertTrue(timer.elapsedTime() < 1.0);

// Next, check a bad URL against a big list
URLFilter f = new URLFilter(big_list);
timer.start();

filter.check(naughty_url);

timer.end();

assertTrue(timer.elapsedTime() < 2.0);

// Finally, check a bad URL against a huge list
URLFilter f = new URLFilter(Chuge_list);
timer.start();

filter.check(naughty_url);

timer.end();

assertTrue(timer.elapsedTime() < 3.0);

! L]
b

13



http://www.xxxxxxxxxxx.com

Waterford Institute of Technology

g INSTITIOID TECNEOLAIOCHTA PHORT LARGE

013

Except where otherwise noted, this content is
licensed under a Creative Commons Attribution-
NonCommercial 3.0 License.

For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

i

elLearning
support unit



