
Produced
by

Department of Computing, Maths & Physics

Waterford Institute of Technology
http://www.wit.ie

http://elearning.wit.ie

Agile Software Development

Eamonn de Leastar (edeleastar@wit.ie)

mailto:edleastar@wit.ie

“The Right-BICEP”

Right B.I.C.E.P.

• Guidelines of some areas that might be important to test:

!
• Right - Are the results right?

!

• B - Are all the boundary conditions CORRECT?

!

• I - Can you check inverse relationships?

!

• C - Can you cross-check results using other means?

!

• E - Can you force error conditions to happen?

!

• P - Are performance characteristics within bounds?

�3

Right

• Key question : If the code ran correctly, how would the developer know?
• If this question cannot be answered satisfactorily, then writing the code or

the test may be a complete waste of time.

• Does that mean code cannot be written until all the requirements are in?

• No. If the requirements are truly not yet known, or complete, you
developer will extrapolate as a stake in the ground.

• They may not be correct from the user's point of view, but the developer
now knows what he/she thinks the code should do, and so you can
answer the question.

• The definition of correct may change over the lifetime of the code in question,
but at any point, developer should be able to prove that it's doing what he/
she thinks it should be doing.

�4

B. Boundary Conditions

• Identifying boundary
conditions is one of the most
valuable parts of unit testing,
because this is where most
bugs generally live - at the
edges

�5

 public void testOrder ()	
 {	
 assertEquals(9, Largest.largest(new int[] { 9, 8, 7 }));	
 assertEquals(9, Largest.largest(new int[] { 8, 9, 7 }));	
 assertEquals(9, Largest.largest(new int[] { 7, 8, 9 }));	
 }	
!
 public void testDups ()	
 {	
 assertEquals(9, Largest.largest(new int[] { 9, 7, 9, 8 }));	
 }	
!
 public void testOne ()	
 {	
 assertEquals(1, Largest.largest(new int[] { 1 }));	
 }	
!
 public void testNegative ()	
 {	
 int[] negList = new int[] { -9, -8, -7 };	
 assertEquals(-7, Largest.largest(negList));	
 }	
!
 public void testEmpty ()	
 {	
 try	
 {	
 Largest.largest(new int[] {});	
 fail("Should have thrown an exception");	
 }	
 catch (RuntimeException e)	
 {	
 assertTrue(true);	
 }	
 }

Example Boundaries:

• Totally bogus or inconsistent input values, such as a file name of "!*W:Xn&Gi/
w>g/h#WQ@".

• Badly formatted data, such as an e-mail address without a top-level domain
("fred@foobar.").

• Empty or missing values (such as 0, 0:0, "", or null).

• Values far in excess of reasonable expectations, such as a person's age of
10,000 years.

• Duplicates in lists that shouldn't have duplicates.

• Ordered lists that aren't, and vice-versa. Try handing a pre-sorted list to a sort
algorithm, for instance, or even a reverse-sorted list.

• Things that arrive out of order, or happen out of expected order, such as
trying to print a document before logging in.

�6

Boundary Conditions C.O.R.R.E.C.T.

• Conformance - Does the value conform to an expected format?

• Ordering - Is the set of values ordered or unordered as appropriate?

• Range - Is the value within reasonable minimum and maximum values?

• Reference - Does the code reference anything external that isn't under direct
control of the code itself?

• Existence - Does the value exist (e.g., is non-null, nonzero, present in a set,
etc.)?

• Cardinality - Are there exactly enough values?

• Time (absolute and relative) - Is everything happening in order? At the right
time? In time?

�7

I. Check Inverse Relationships

• Some methods can be checked by
applying their logical inverse.

• E.g check a method that calculates a
square root by squaring the result, and
testing that it is tolerably close to the
original number:

• Or -check that some data was successfully
inserted into a database by then searching
for it.

�8

public void testSquareRootUsingInverse() !
{!
 double x = mySquareRoot(4.0);!
 assertEquals(4.0, x * x, 0.0001);!
}

C. Cross-check Using Other Means

• Where possible, use a different source for
the inverse test (bug could be in original and
in inverse)

• Usually there is more than one way to
calculate some quantity;

• Pick one algorithm over the others because it
performs better, or has other desirable
characteristics - use that one in production.

• Use one of the other versions to cross-check
our results in the test system.

• Especially helpful when there's a proven,
known way of accomplishing the task that
happens to be too slow or too complex to
use in production code.

�9

public void testSquareRootUsingStd() !
{!
 double number = 3880900.0;!
 double root1 = mySquareRoot(number);!
 double root2 = Math.sqrt(number);!
 assertEquals(root2, root1, 0.0001);!
}

Cross-check Using Other Means (2)

• Another example: a library database system:

• The number of copies of a particular book should always balance. (number
of copies that are checked out plus the number of copies sitting on the
shelves should always equal the total number of copies).

• Separate pieces of data, and may even be reported by objects of different
classes, but they still have to agree, and so can be used to cross-check
one another.

�10

E. Force Error Conditions

• In the real world, errors happen: disks fill up, network lines drop, e-mail goes
down, and programs crash. Developer should test that code handles many
of these real world problems by forcing errors to occur.

• That's easy enough to do with invalid parameters and the like, but to
simulate specific network errors without unplugging any cables takes some
special techniques.

• For instance:

• Running out of memory

• Running out of disk space

• Network availability and errors

• System load

• Limited color palette

• Very high or very low video resolution

�11

P. Performance Characteristics

• Performance characteristics - does not necessarily mean measuring
performance itself - but rather trends as input sizes grow, as problems
become more complex.

• The objective not to objectively measure performance, but to incorporate
general tests just to make sure that the performance curve remains stable

�12

Performance
example

• A filter that identifies web
sites to block.

• The code may works well
with a few dozen sample
sites, but will it work as well
with 10,000? 100,000.

• This test may take 6-7
seconds to run, so may run
only nightly.

• See JUnitPerf for tools to
simplify such tests.

�13

public void testURLFilter() 	
{	
 Timer timer = new Timer(); 	
 String naughty_url = "http://www.xxxxxxxxxxx.com";	
 	
 // First, check a bad URL against a small list 	
 URLFilter filter = new URLFilter(small_list);	
 timer.start();	
 filter.check(naughty_url);	
 timer.end(); 	
 assertTrue(timer.elapsedTime() < 1.0);	
 	
 // Next, check a bad URL against a big list 	
 URLFilter f = new URLFilter(big_list);	
 timer.start();	
 filter.check(naughty_url);	
 timer.end();	
 assertTrue(timer.elapsedTime() < 2.0);	
 	
 // Finally, check a bad URL against a huge list	
 URLFilter f = new URLFilter(huge_list);	
 timer.start();	
 filter.check(naughty_url);	
 timer.end();	
 assertTrue(timer.elapsedTime() < 3.0);	
}

http://www.xxxxxxxxxxx.com

Except where otherwise noted, this content is
licensed under a Creative Commons Attribution-
NonCommercial 3.0 License.

!
For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

