Agile Software Development

Eamonn de Leastar (edeleastar@wit.ie)

Department of Computing, Maths & Physics
Waterford Institute of Technology

http://www.wit.ie

http://elearning.wit.ie

Waterford Institute of Technology 0 elLearning

A\ g INSTIMOID THCNEOLAIOCHTA PHORT LARGE SUppOFI unit

=0
So

mailto:edleastar@wit.ie

How can we verify logic independently
Test Double when code it depends on is unusable?

How can we avoid Slow Tests?

We replace a component on which the SUT
depends with a “test-specific equivalent.”

DOC

Fixture

Setup Test
Double
Exercise
Verify O
O
Teardown

SUT - System Under Test
DOC - Depended-On Component

2

What is a Test Double?

- Hard to test the SUT because it depends on other components that cannot
be used in the test environment

* Eg - those components aren’t available, will not return the results needed for
the test, or executing them would have undesirable side effects

- When writing a test in which we cannot use the real Depended-on
Component (DOC), we can replace it with a Test Double.

- The Test Double doesn’t have to behave exactly like DOC, it merely has to
provide the same API so that the SUT thinks it is the real one

- Called after “Stunt Double” in movie making - the stunt person takes the
place of the real actor

When to use It

- If we have an untested requirement because neither the SUT nor its DOCs
provide an observation point for the SUT’s indirect output that we need to
verify

- If we have untested code and a DOC does not provide the control point to
allow us to exercise the SUT with the necessary indirect inputs

- If we have slow tests and we want to be able to run our tests more quickly
and hence more often

Test

Double
C AN
Variations of Test Double |
i_f)hﬁ;r;); -i Test Test Mock Fake
- _O_tZ]_ef)_t) JI Stub Spy Object Object

Dummy Object: Some method signatures of the SUT may require objects as
parameters. If neither the test nor the SUT cares about these objects, pass in
a null object reference or an instance of the Object class.

Test Stub: Replace a real component on which the SUT depends so that the
test has a control point for the indirect inputs of the SUT. No behaviour
simulated or values returned.

Test Spy: a more capable version of a Test Stub - provide values to the SUT in
response to method calls.

Mock Object: an observation point to verify the indirect outputs of the SUT as
it is exercised. Typically, it includes the functionality of a Test Stub in that it
must return values to the SUT, but the emphasis is on the verification of the
iIndirect outputs.

Fake Object: replace the functionality of a real DOC in a test for reasons other
than verification of indirect inputs and outputs of the SUT. Perhaps real object
too slow, has undesirable side effects etc...

Test Stub

How can we verify logic
iIndependently when it
depends on indirect
inputs from other
software components?

We replace a real
object with a test-
specific object that
feeds the desired

iIndirect inputs into the
system under test.

Setup

Exercise

Installation

DOC
Test

Fixture

Creation

SUT

Verify ()

e

Teardown

>

Stub

Return
Values

Test Stub Motivation

public void testDisplayCurrentTime_AtMidnight()
{
// fixture setup
TimeDisplay sut = new TimeDisplay();
// exercise SUT
String result = sut.getCurrentTimeAsHtmlFragment();
// verify direct output
String expectedTimeString = "Midnight";
assertEquals(expectedTimeString, result);

» Verifies the basic functionality of a component that formats an
HTML string containing the current time.

* Depends on the real system clock so it rarely ever passes!

Test Stub Example

1

public void testDisplayCurrentTime_AtMidnight()

// Fixture setup

// Test Double configuration

TimeProvider tpStub = new TimeProviderTestStub();
tpStub.setHours(0);

tpStub.setMinutes(0);

// Instantiate SUT

TimeDisplay sut = new TimeDisplay();

// Test Double installation
sut.setTimeProvider(tpStub);

// Exercise SUT

String result = sut.getCurrentTimeAsHtmlFragment();
// Verify outcome

String expectedTimeString = "Midnight";
assertEquals("Midnight", expectedTimeString, result);

* Note that TimeDisplay (SUT) depends on TimeProvider (DOC).

» The DOC is replaced with a stub - TimeProviderTestStub which is
hand coded to return 00:00 time.

Test Stub Using JMock Library

public void testDisplayCurrentTime_AtMidnight_IM(Q)
{
// Fixture setup
TimeDisplay sut = new TimeDisplay();
// Test Double configuration
Mock tpStub = mock(TimeProvider.class);
Calendar midnight = makeTime(0,0);
tpStub.stubs().method("getTime™).withNoArguments() .will(returnValue(midnight))
// Test Double installation
sut.setTimeProvider((TimeProvider) tpStub);
// Exercise SUT
String result = sut.getCurrentTimeAsHtmlFragment();
// Verify outcome
String expectedTimeString ="Midnight";
assertEquals("Midnight", expectedTimeString, result);

« There is no Test Stub implementation to examine for this test because
the JMock framework implements the Test Stub using reflection

Mock Object

How do we implement
Behavior Verification for
iIndirect outputs of the
SUT?

How can we verify logic
iIndependently when it
depends on indirect
iInputs from other
software components?

We replace an object on
which the SUT depends
on with a test specific
object that verifies it is
being used correctly by
the SUT.

FIX
Creation > Mock
Setup H Object
Installation Expectations
i > Indirect ™
Exercise
——exercise—| S|)| EOURU \. >
: o/ ;’
Ve I'Ify Final Verification
Teardown

10

How it Works

- Define a Mock Obiject that implements the same interface as an object on
which the SUT depends.

 During the test, configure the Mock Object with the values with which it
should respond to the SUT and the method calls (complete with expected
arguments) it should expect from the SUT.

- Before exercising the SUT, install the Mock Object so that the SUT uses it
instead of the real implementation.

- When called during SUT execution, the Mock Object compares the actual
arguments received with the expected arguments using equality assertions
and fails the test if they don’t match.

11

Implementation

- Tests written using Mock Objects look different from more traditional tests
because all the expected behavior must be specified before the SUT is
exercised.

 This makes the tests harder to write and to understand.

 The standard Four-Phase Test is altered somewhat when we use Mock
Objects.

* In particular, the fixture setup phase of the test is broken down into three
specific activities and the result verification phase more or less
disappears,except for the possible presence of a call to the “final verifi
cation” method at the end of the test.

12

Test Structure

* Fixture setup:

- Test constructs Mock Object.

- Test configures Mock Object.

- Test installs Mock Obiject into SUT.

» Test sets expectations on mock object. i.e. what behavior it expects to
be triggered by SUT

- Exercise SUT:
« SUT calls Mock Object; Mock Object does assertions.
* Result verification:
» Test calls “final verification” method.
* Fixture teardown:

« No impact.
13

—xample -Motivation

(from JMock Documentation)

A Publisher sends messages to zero
or one Subscriber.

We want to test the Publisher, which
Involves testing its interactions with its
Subscribers.

We will test that a Publisher sends a
message to a single registered
Subscriber.

To test interactions between the
Publisher and the Subscriber we will
use a mock Subscriber object

public interface Subscriber

{

volid receive(String message);

}

public class Publisher

{

private Subscriber subscriber;

public void add(Subscriber subscriber)

{

this.subscriber = subscriber;

}

public void publish(String message)
{
1f (subscriber != null)
subscriber.receive(message);

14

Configure Test Case

* First we must import the
jMock classes, define our
test fixture class and create
a "Mockery" that represents
the context in which the
Publisher exists.

« The context mocks out the
objects that the Publisher
collaborates with (in this
case a Subscriber) and
checks that they are used
correctly during the test.

import
import
import
import
import
import

import
import

org.
. Jjmock.
org.
org.
org.
org.

org

sut.
sut.

jmock.

jmock.
jmock.
junit.
junit.

Expectations;

Mockery;

integration. junit4. JMock;
integration. junit4.JUnit4Mockery;
Test;

runner.RunWith;

Publisher;
Subscriber;

@RunWith(JIMock.class)
public class PublisherTest

{

Mockery context = new JUnit4Mockery();

15

Fixture Setup (1)

- Write the method that will perform our test - first set up the context in which our
test will execute:

e Construct: create a Publisher to test.

* Configure: create a mock Subscriber that should receive the message.

* Install: register the Subscriber with the Publisher.

@Test
public void oneSubscriberReceivesAMessage()

{
Publisher publisher = new Publisher();

final Subscriber subscriber = context.mock(Subscriber.class);
publisher.add(subscriber);

16

Fixture Setup (2)

« Define expectations on the mock @Test
Subscriber that specify the public void oneSubscriberReceivesAMessage()
methods that we expect to be L

called upon it during the test run.

context.checking(new Expectations()

{{
» We expect the receive method to oneOf (subscriber).receive(message);

be called once with a single 315
argument, the message that will o
be sent. 1

17

http://www.jmock.org/expectations.html

—xercise SUT

 We then execute the

code that we want to
test.

@Test
public void oneSubscriberReceivesAMessage()

{

publisher.publish(message);

18

Result Verification

- After the code under test has
finished our test must verify that
the mock Subscriber was called as
expected.

- If the expected calls were not
made, the test will fail. The
MockObijectTestCase does this
automatically.

* You don't have to explicitly verify
the mock objects in your tests.

@Test
public void oneSubscriberReceivesAMessage()

{

Publisher publisher = new Publisher();
final Subscriber subscriber

= context.mock(Subscriber.class);
publisher.add(subscriber);

final String message = "message”;
context.checking(new Expectations()

11

oneOf (subscriber).receive(message);

13

publisher.publish(message);

19

The jMock Cookbook

How to...

[0 T 1 T 1 T 1 T 1 TR S e S W W W W S W |
AON2O©0O®NDOR®®N SO

© ©®NO O~ OO~

Get Started

Define Expectations

Return Values from Mocked Methods
Throw Exceptions from Mocked Methods
Match Parameter Values

Precisely Specify Expected Parameter Values
Expect Methods More (or Less) than Once

Expect a Sequence of Invocations

Expect an Invocation Between Two Other Invocations

Ilgnore Irrelevant Mock Objects

. Override Expectations Defined in the Test Set-Up

Match Objects and Methods
Write New Matchers

Write New Actions

Easily Define Actions with Scripts
Test Multithreaded Code with Mock Objects

Mock Generic Types

Mock Abstract and Concrete Classes

Use jMock with Languages Other Than Java
Upgrade from jMock 1 to jMock 2

. Use jMock in Maven Builds
. Understand method dispatch in jMock 2

Mock Classes in Eclipse Plug-in Tests
Mock asynchronous GWT services

20

Using jMock from Maven Builds

* The jMock 2 jars are
accessible via Maven 2 by
declaring the following

dependencies in your
POM.

 All the required
dependencies on jMock
will be included
automatically.

<dependency>
<groupId>org.jmock</groupId>
<artifactId>jmock-junitd4</artifactId>
<version>2.5.1</version>
</dependency>

21

« Return values from
mocked methods by
using the returnValue
action within the "will"
clause of an
expectation.

* The returnlterator
action returns an
iterator over a
collection.

- A convenient overload
of the returnlterator
method lets you
specify the elements
Inline:

Returning Values

oneOf (calculator).add(2, 2); will(returnValue(5));

final List<Employee> employees = new ArraylList<Employee>();
employees.add(alice);
employees.add(bob);

context.checking(new Expectations()

{{
oneOf (department).employees(); will(returnlterator(employees));
s

context.checking(new Expectations()

{{
oneOf (department).employees(); will(returnlterator(alice, bob));
s

22

—xceptions

+ Use the throwException action to throw an exception from a mocked
method.

allowing (bank).withdraw(with(any(Money.class)));
will(throwException(new WithdrawallLimitReachedException());

23

—xpecting Methods More (or Less) than Once

oneOf The invocation is expected once and once only.

exactly(n).of The invocation is expected exactly n times. Note: one is a
convenient shorthand for exactly(1).

atLeast(n).of The invocation is expected at least n times.
atMost(n).of The invocation is expected at most n times.

between(min, max).of The invocation is expected at least min times and at
most max times.

allowing The invocation is allowed any number of times but does not have
to happen.

ignoring The same as allowing. Allowing or ignoring should be chosen to
make the test code clearly express intent.

never The invocation is not expected at all. This is used to make tests more
explicit and so easier to understand.

24

Mocking Classes with jMock and the

Classimposteriser

- Because it uses Java's standard
reflection capability, the default
configuration of the jMock
framework can only mock
Interfaces, not classes.

However, the Classimposteriser
extension class uses the CGLIB
2.11 and Objenesis? libraries to
create mock objects of classes
as well as interfaces.

This is useful when working with
legacy code to tease apart
dependencies between tightly
coupled classes.

import org.jmock.Mockery;

import org.jmock.Expectations;

import org.jmock.integration. junit4.JUnit4Mockery;
import org.jmock.lib.legacy.ClassImposteriser;

@RunWith(JIMock.class)
public class ConcreteClassTest

{

private Mockery context = new JUnit4Mockery()

{{
setImposteriser(ClassImposteriser.INSTANCE);

f

@Test
void someTest()

{

Graphics g = context.mock(java.awt.Graphics.class);
// expectations and tests

¥

25

http://cglib.sourceforge.net/
http://code.google.com/p/objenesis/

Waterford Institute of Technology

g INSTITIOID TECNEOLAIOCHTA PHORT LARGE

013

Except where otherwise noted, this content is
licensed under a Creative Commons Attribution-
NonCommercial 3.0 License.

For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

i

elLearning
support unit

