Agile Software Development

Eamonn de Leastar (edeleastar@wit.ie)

Department of Computing, Maths & Physics
Waterford Institute of Technology

http://www.wit.ie

http://elearning.wit.ie

| Waterford Institute of Technology
c_;:]\~_ T INSTITIOID TECNEOLAIOCHTA PHORT LARCE

e

i

elLearning
support unit

mailto:edleastar@wit.ie

Mocking Opportunities in Pacemaker

Dacemaker 2 . O v;f;%;ﬁpaa::makerplay [pacemakerplay master)

> {3 (default package)

v {3 controllers
. » [J] Accounts.java
- REST Web Service - 1) Oashboardova
» [J} PacemakerAPl.java
v {3 models
» [J] Activity.java

. Standard Web U] o e

» [J] JsonParser.java
¥ {3 views
m accounts_login.scala.html
m accounts_signup.scala.html
| dashboard_main.scala.html
m dashboard_uploadactivity.scala.html
m main.scala.html
mwelcome_main.scala.html
mwelcome_menu.scala.html
> (HBtest
» =), Referenced Libraries
> =) Scala Library [2.10.3])
> =, JRE System Library [Java SE 7 [1.7.0_40]]
» (= conf
P (= logs
> (5 project
> (5 public
P (= target
i) build.sbt
- README

Assignment Rubric for Assignment 2 (top marks deployment + any 2 others)

Standard| Deployment Features UX DX

Baseline REST (Local) (Se:fileee:pe . Console Rest Tests

reports

Good REST (Deployed) (see runkeeper)

Console - asciiart Models

Test Doubles
Simple Web (Factor out pacemaker
iNnto 2 services)

friends
(see runkeeper)

Excellent | REST (Secured)

dashboard

Outstanding | REST (2 x cloud) (see runkeeper)

Web Ajax or App | APl Documentation

4

pacemakerplay service

<<component>> $:]
pacemakerplay

-+ Provides an API for managing:

* users

- activities

PacemakerPlayAPI O

»routes (within activities)

API

GET /api/users
DELETE /api/users
POST /api/users

PacemakerAPI.users()
PacemakerAPI.deleteAllUsers()
PacemakerAPI.createUser()

GET /api/users/
DELETE /api/users/
PUT /api/users/

PacemakerAPI.user(id: Long)
PacemakerAPI.deleteUser(id: Long)
PacemakerAPI.updateUser(id: Long)

GET /api/users/ PacemakerAPI.activities(userId: Long)

POST /api/users/ PacemakerAPI.createActivity(userId: Long)

GET /api/users/ PacemakerAPI.activity(userId: Long, activityld:Long)
DELETE /api/users/ PacemakerAPI.deleteActivity(userId: Long, activityld:Long)
PUT /api/users/ PacemakerAPI.updateActivity(userId: Long, activityId:Long)

pacemakerplaytest

Exercise the APl over HT TP

Full set of tests to verify key
features

New Feature - ‘Social’

Excellent

REST (Secured)

Follow friends

friends
(see runkeeper)

Test Doubles

Simple Web (Factor out pacemaker
INto 2 services)

- Consider modelling this as a

View Friends activities

‘Feeds’, etc...

separate service

- With its own API for managing

»soclal graph
- updates

- follow/unfollow etc...

pacemakerplaysocial

Uncouple the social aspects
from the core activity service

- Allows the social service to be
constructed and optimised
iIndependently

NoSQL database more
appropriate

Interfaces to twitter/
facebook etc..

pacemakerplay ->pacemakerplaysocial

<<component>> 'g:l <<component>> $:|

pacemakerplay pacemakerplaysocial

Social API

O

EnhancedPacemakerAPI

£

—nhanced’ API| uses Social features, provided by
pacemakerplaysocial service

The Role of Mock Objects

+ Postpone the Construction of the pacemakerplaysocial
component

+ Model the API first as a REST AP
- Mock out its implementation
+ Then:
- Write Tests against the Mocked out AP

- Enhance pacemaker play API to incorporate social features

pacemakerplay ->pacemakerplaysocial

<<component>> 'Ej <<component>> 'Ej
pacemakerplay pacemakerplaysocial

Social API MOCked

Implementation

O

EnhancedPacemakerAPI

Use REST Mocking Services to deliver realistic test data
to pacemakerplay

Getting Started
Stubbing

Verifying

Proxying

Record and Playback
Stateful Behaviour
Simulating Faults

WireMock iy,

WireMock is a flexible library for stubbing and mocking web services. Unlike general
purpose mocking tools it works by creating an actual HTTP server that your code under
test can connect to as it would a real web service.

It supports HTTP response stubbing, request verification, proxy/intercept,
record/playback of stubs and fault injection, and can be used from within a unit test or
deployed into a test environment.

Although it's written in Java, there’s also a JSON API so you can use it with pretty much
any language out there.

What’s it for?

Some scenarios you might want to consider WireMock for:

» Testing mobile apps that depend on third-party REST APIs

» Creating quick prototypes of your APIs

» Injecting otherwise hard-to-create errors in 3rd party services
« Any unit testing of code that depends on a web service

[=EE

Mocky o

Mock your HTTP responses to test your REST API

> PUT http://www.mocky.i0/v2/5185415bal71ea3a00704eed

< HTTP/1.1 200 OK
< Content-Type: application/json; charset=UTF-8
{ "hello": "world" }

Now with JSONP support, just add ?callback=myfunction to your links.

Generate your custom response

Status Code | 200 OK v
Content Type \ application/json v | ‘ UTF-8 x ‘
Custom headers :

Eg: ETag, If-None-Match, Expires, Last-Modified, Server, X-Cache, Cache-Control,
X-Frame-Options, Server, Set-Cookie, X-UA-Compatible...

Body

Generate my HTTP Response Switch to basic mode

- Implementing TDD effectively: getting started, and

- Creating cleaner, more expressive, more sustainable

- Using Mock Objects to guide object-oriented designs

Key Text on Employing Test Doubles Effectively

maintaining your momentum throughout the project

code GROWING
| o OBJECT-ORIENTED
+ Using tests to stay relentlessly focused on sustaining SOFTWARE
quality GUIDED BY TESTS

STEVE FREEMAN w 7N '
+ Understanding how TDD, Mock Objects, and Object- Kiie Paves _;\,:{z//.‘\‘\,\ '

Oriented Design come together in the context of a —
real software development project

+ Succeeding where TDD is difficult: managing

complex test data, and testing persistence and
concurrency

1DD - Key lexts

The
Pragmatic

Programmers

Pragmatic
nit Testing

ot 11 XUNIT TEST
by PATTERNS

(GROWING
OBJECT-ORIENTED
SOFTWARE,

(GUIDED BY 1ESTS

GERARD MESZAROS

STEVE FREEMAN /ﬁ/“\\'

NAT PrYCI
: / Y
\ 4

Foreword by Martin Fowler

Waterford Institute of Technology

.o INSTITIOID TECNEOLAIOCHTA PHORT LAIRGE

H©

Except where otherwise noted, this content is
licensed under a Creative Commons
Attribution-NonCommercial 3.0 License.

For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

i

elLearning
support unit

