
Produced
by

Department of Computing, Maths & Physics

Waterford Institute of Technology
http://www.wit.ie

http://elearning.wit.ie

Agile Software Development

Eamonn de Leastar (edeleastar@wit.ie)

mailto:edleastar@wit.ie

Mocking Opportunities in Pacemaker

Pacemaker 2.0	

• REST Web Service

• Standard Web UI

Assignment Rubric for Assignment 2 (top marks deployment + any 2 others)

Standard Deployment Features UX DX

Baseline REST (Local) activities
(see runkeeper) Console Rest Tests

Good REST (Deployed) reports
(see runkeeper) Console - asciiart Models

Excellent REST (Secured) friends
(see runkeeper) Simple Web

Test Doubles
(Factor out pacemaker

into 2 services)

Outstanding REST (2 x cloud) dashboard
(see runkeeper) Web Ajax or App API Documentation

4

pacemakerplay service

• Provides an API for managing:

• users

• activities

• routes (within activities)
API

GET /api/users controllers.PacemakerAPI.users()
DELETE /api/users controllers.PacemakerAPI.deleteAllUsers()
POST /api/users controllers.PacemakerAPI.createUser()

GET /api/users/:id controllers.PacemakerAPI.user(id: Long)
DELETE /api/users/:id controllers.PacemakerAPI.deleteUser(id: Long)
PUT /api/users/:id controllers.PacemakerAPI.updateUser(id: Long)

GET /api/users/:userId/activities controllers.PacemakerAPI.activities(userId: Long)
POST /api/users/:userId/activities controllers.PacemakerAPI.createActivity(userId: Long)

GET /api/users/:userId/activities/:activityId controllers.PacemakerAPI.activity(userId: Long, activityId:Long)
DELETE /api/users/:userId/activities/:activityId controllers.PacemakerAPI.deleteActivity(userId: Long, activityId:Long)
PUT /api/users/:userId/activities/:activityId controllers.PacemakerAPI.updateActivity(userId: Long, activityId:Long)

pacemakerplaytest

• Exercise the API over HTTP

• Full set of tests to verify key
features

New Feature - ‘Social’

• Follow friends

• View Friends activities

• ‘Feeds’, etc…

• Consider modelling this as a
separate service

• With its own API for managing

• social graph

• updates

• follow/unfollow etc…

pacemakerplaysocial

• Uncouple the social aspects
from the core activity service

• Allows the social service to be
constructed and optimised
independently

• NoSQL database more
appropriate

• Interfaces to twitter/
facebook etc..

pacemakerplay ->pacemakerplaysocial

• ‘Enhanced’ API uses Social features, provided by
pacemakerplaysocial service

The Role of Mock Objects

• Postpone the Construction of the pacemakerplaysocial
component

• Model the API first as a REST API

• Mock out its implementation

• Then:

• Write Tests against the Mocked out API

• Enhance pacemaker play API to incorporate social features

pacemakerplay ->pacemakerplaysocial

• Use REST Mocking Services to deliver realistic test data
to pacemakerplay

Mocked
Implementation

Key Text on Employing Test Doubles Effectively
• Implementing TDD effectively: getting started, and

maintaining your momentum throughout the project

• Creating cleaner, more expressive, more sustainable
code

• Using tests to stay relentlessly focused on sustaining
quality

• Understanding how TDD, Mock Objects, and Object-
Oriented Design come together in the context of a
real software development project

• Using Mock Objects to guide object-oriented designs

• Succeeding where TDD is difficult: managing
complex test data, and testing persistence and
concurrency

TDD - Key Texts

Except where otherwise noted, this content is
licensed under a Creative Commons
Attribution-NonCommercial 3.0 License.

For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

