
Produced
by

Department of Computing, Maths & Physics

Waterford Institute of Technology

http://www.wit.ie

http://elearning.wit.ie

Principles

Liskov Substitution Principle

Eamonn de Leastar

edeleastar@wit.ie

mailto:edeleastar@wit.ie

SOLID Principles

2

• The Single Responsibility Principle 	
• A class should have one, and only one, reason to change.

• The Open Closed Principle 	
• You should be able to extend a classes behavior, without modifying it.

• The Liskov Substitution Principle 	
• Derived classes must be substitutable for their base classes.

• The Interface Segregation Principle
• Make fine grained interfaces that are client specific.

• The Dependency Inversion Principle 	
• Depend on abstractions, not on concretions.

Source Material (2)

3http://en.wikipedia.org/wiki/Solid_(object-oriented_design)

http://en.wikipedia.org/wiki/Solid_(object-oriented_design)

4

LSP

±Methods that use references to base class types must be
able to use objects or derived types without knowing it

What is wanted here is something like the following substitution property:
If for each object o1 of type S there is an object o2 of type T such that for
all programs P defined in terms of T, the behaviour of P is unchanged
when o1 is substituted for o2 then S is a subtype of T.

Barbara Liskov, “Data Abstraction and Hierarchy,” SIGPLAN Notices,
23,5 (May, 1988).

Barbara Liskov

5

6

Simple Violation of LSP

±It must be modified whenever new derivatives of Shape are
presented.

void drawShapes (Shape shape)
{
 if (shape instanceof Square)
 {
 drawSquare ((Square)shape);
 }
 else if (shape instance of Circle)
 {
 drawCircle ((Circle) shape);
 }
}

±drawShapes()
references a base
type shape

±It violates LSP
because it must
know of every
derived type of
Shape

7

Adhering to LSP

±drawShape now
adheres to LSP

class Shape
{
 void draw()
 {//…}
}

class Circle extends Shape
{
 private double itsRadius;
 private Point itsCenter;
 public void draw()
 { //… }
}

class Square extends Shape
{
 private double itsSide;
 private Point itsTopLeft;
 public void draw()
 { //… }
}

 void drawShape (Shape s)
 {
 s.draw();
 }

8

Rectangle

±Rectangle class is released for general use

class Rectangle
{
 private int width;
 private int height;

 public void setWidth (int width)
 {...}
 public void setHeight (int height)
 {...}
 public int getWidth ()
 {...}
 public int getHeight ()
 {...}
}

9

Square

±A Square class is required
±Square is introduced as a subclass of

Rectangle
±At one level, this use of inheritance can be

considered appropriate:
±A Square is a rectangle whose width and height

are equal
±However, both width & height not needed

(just one).
±Potential inefficiency if many rectangles

created (e.g. CAD application)

10

Rectangle Width & Height
±Both setWidth() and

setHeight() should not
vary independently

±Client could easily call
one and not the other –
thus compromising the
Rectangle

±Potential solution is to
implement setWidth() and
setHeight() in Square
class

±These methods then
make sure width & height
are adjusted

class Square extends Rectangle
{
 public void setWidth (int width)
 {
 super.setWidth(width);
 super.setHeight(width);
 }
 public void setHeight (int height)
 {
 super.setWidth(height);
 super.setHeight(height);
 }
}

11

Polymorphism

±Polymorphism ensures that:
±If the f() method is passed a Rectangle, then its width will be adjusted
±If passed a Square, then both height and width will be changed

±Assume model is consistent & correct
±However….

void f (Rectangle r)
{
 r.setWidth(5);
}

12

More Subtle Problem

±If r is a Rectangle instance
±g() methods works as expected

±If r is a Square
±g() assertion is triggered

±g() assumes that width and height of a Rectangle can be
varied independently

±Substitution of a Square violates this assumption
±Square violates LSP

void g (Rectangle r)
{
 r.setWidth(5);
 r.setHeight(4);
 assert (r.getWidth() * r.getHeight()) == 20;
}

13

Validating the Model

±A model, viewed in isolation, cannot be meaningfully
validated

±The validity of a model can only be expressed in terms of its
clients:
±Examining the final version of the Square and Rectangle classes in

isolation, we found that they were self consistent and valid.
±When we examined from the viewpoint of g() (which made reasonable

assumptions) the model broke down.
±Thus, when considering whether a design is appropriate or

not, it must must examined in terms of the reasonable
assumptions that will be made by the users of that design

14

Behavioural Problems

±A square might be a rectangle, but a Square object is not a
Rectangle object.
±the behaviour of a Square object is not consistent with the behaviour

of a Rectangle object.
±The LSP makes clear that inheritance relationship pertains

to behaviour
±Not intrinsic private behaviour, but extrinsic public

behaviour; behaviour that clients depend upon.
±g() depended on the fact that Rectangles behave such that

their height and width vary independently of one another.
±That independence of the two variables is an extrinsic

public behaviour that other methods are also likely to
depend upon.

15

Fragile Base Class Problem
class Stack extends ArrayList
{
 private int stack_pointer = 0;

 public void push(Object article)
 {
 add(stack_pointer++, article);
 }

 public Object pop()
 {
 return remove(--stack_pointer);
 }

 public void push_many(Object[] articles)
 {
 for(int i = 0; i < articles.length; ++i)
 push(articles[i]);
 }
}

16

Clearing the Stack

±This code and uses the ArrayList's clear() method to pop
everything off the stack

±The code successfully executes, but since the base class
doesn't know anything about the stack pointer, the Stack
object is now in an undefined state.

±The next call to push() puts the new item at index 2 (the
stack_pointer's current value), so the stack effectively has
three elements on it—the bottom two are garbage.

Stack a_stack = new Stack();
a_stack.push("1");
a_stack.push("2");
a_stack.clear();

17

Use Composition instead of Inheritance

18

Composed Solution
class Stack
{
 private int stack_pointer = 0;
 private ArrayList the_data = new ArrayList();

 public void push(Object article)
 {
 the_data.add(stack_pointer++, article);
 }

 public Object pop()
 {
 return the_data.remove(--stack_pointer);
 }

 public void push_many(Object[] articles)
 {
 for(int i = 0; i < o.length; ++i)
 push(articles[i]);
 }
}

19

Monitorable Stack
±Tracks the maximum

stack size over a
certain time period.

class Monitorable_stack extends Stack
{
 private int high_water_mark = 0;
 private int current_size;

 public void push(Object article)
 {
 if(++current_size > high_water_mark)
 high_water_mark = current_size;
 super.push(article);
 }
 public Object pop()
 {
 --current_size;
 return super.pop();
 }
 public int maximum_size_so_far()
 {
 return high_water_mark;
 }
}

20

push_many Implementation

±Which class implements push_many nethod?
±If f() is passed a MonitorableStack, does a call to

push_many update high_water_mark?
±Polymorphism ensures that MonitrableStack’s push

method is called, and hande high_water_mark is
appropriately updated.

±This is because Stack.push_many() calls the push()
method, which is overridden by MonitorableStack

void f(Stack s)
{
 //...
 s.push_many (someObjectArray);
 //...
}

21

Revised Stack

±A profiler is run against an implementation using Stack
±It notices the Stack isn't as fast as it could be and is heavily

used.
±Stack is rewritten so it doesn't use an ArrayList and

consequently it gains a performance boost…

22

Revised Stack using Arrays
class Stack
{
 private int stack_pointer = -1;
 private Object[] stack = new Object[1000];

 public void push(Object article)
 {
 assert stack_pointer < stack.length;
 stack[++stack_pointer] = article;
 }
 public Object pop()
 {
 assert stack_pointer >= 0;
 return stack[stack_pointer--];
 }
 public void push_many(Object[] articles)
 {
 assert (stack_pointer + articles.length) < stack.length;
 System.arraycopy(articles, 0, stack, stack_pointer+1,
 articles.length);
 stack_pointer += articles.length;
 }
}

23

Problems?

±If s is a MonitorableStack, is high_water_mark updated?
±No – because the new Stack base class push_many()

implementation does not call push() at all
±LSP Violation: i.e. function f() will not appropriately operate a

Stack derived object

void f(Stack s)
{
 //...
 s.push_many (someObjectArray);
 //...
}

24

Solution
interface Stack
{
 void push(Object o);
 Object pop();
 void push_many(Object[] source);
}

25

Simple_Stack
class Simple_Stack implements Stack
{
 private int stack_pointer = -1;
 private Object[] stack = new Object[1000];

 public void push(Object article)
 {
 assert stack_pointer < stack.length;
 stack[++stack_pointer] = article;
 }
 public Object pop()
 {
 assert stack_pointer >= 0;
 return stack[stack_pointer--];
 }
 public void push_many(Object[] articles)
 {
 assert (stack_pointer + articles.length) < stack.length;
 System.arraycopy(articles, 0, stack, stack_pointer+1,
 articles.length);
 stack_pointer += articles.length;
 }
}

26

class Monitorable_Stack implements Stack
{
 private int high_water_mark = 0;
 private int current_size;
 Simple_stack stack = new Simple_stack();
 public void push(Object o)
 {
 if(++current_size > high_water_mark)
 high_water_mark = current_size;
 stack.push(o);
 }
 public Object pop()
 {
 --current_size;
 return stack.pop();
 }
 public void push_many(Object[] source)
 {
 if(current_size + source.length > high_water_mark)
 high_water_mark = current_size + source.length;
 stack.push_many(source);
 }
 public int maximum_size()
 {
 return high_water_mark;
 }
}

27

Consult Stack API

28

Stack is Derived from Vector

29

Holub’s Advice
±In general, it's best to avoid concrete base

classes and extends relationships in favour
of interfaces and implements relationships.

±Rule of thumb : 80 percent of code at
minimum should be written entirely in terms
of interfaces.
±E.g. never use references to a HashMap, use

references to the Map
±The more abstraction you add, the greater

the flexibility.
±In today's business environment, where

requirements regularly change as the
program develops, this flexibility is
essential.

Except where otherwise noted, this content is
licensed under a Creative Commons Attribution-
NonCommercial 3.0 License.

For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

