Liskov Substitution Principle

Principles

Eamonn de Leastar
edeleastar@wit.ie

Department of Computing, Maths & Physics
Waterford Institute of Technology

http://www.wit.ie

http://elearning.wit.ie

Waterford Institute of Technology o eLearning
support unit

N g INSTIMUID TECNEOLAIOCHTA PHORT LAIRGE

(-
e

mailto:edeleastar@wit.ie

SOLID Principles

The Single Responsibility Principle

e A class should have one, and only one, reason to change.

The Open Closed Principle

® You should lbe able to extend a classes behavior, without modifying it.
The Liskov Substitution Principle

e Derived classes must be substitutable for their base classes.

The Interface Segregation Principle

e Make fine grained interfaces that are client specific.

The Dependency Inversion Principle

e Depend on abstractions, not on concretions.

Stands

(acronym)

Initial for
S SRP
O OCP
L LSP
| |ISP
D DIP

http://en.wikipedia.org/wiki/Solid_(object-oriented_design)

Source Material (2)

Concept

Single responsibility principle
the notion that an object should have only a single responsibility.

Open/closed principle
the notion that “software entities ... should be open for extension, but
closed for modification”.

Liskov substitution principle
the notion that “objects in a program should be replaceable with
instances of their subtypes without altering the correctness of that
program”. See also design by contract.

Interface segregation principle
the notion that “many client specific interfaces are better than one
general purpose interface.”]

Dependency inversion principle
the notion that one should “Depend upon Abstractions. Do not depend
upon concretions.”®!
Dependency injection is one method of following this principle.

http://en.wikipedia.org/wiki/Solid_(object-oriented_design)

LSP

©Methods that use references to base class types must be
able to use objects or derived types without knowing it

What is wanted here is something like the following substitution property:
If for each object o, of type S there is an object o, of type T such that for

all programs P defined in terms of T, the behaviour of P is unchanged
when 0, is substituted for o, then S is a subtype of T.

Barbara Liskov, “Data Abstraction and Hierarchy,” SIGPLAN Notices,
23,5 (May, 1988).

COMMUNICATIONS |iskov
A C Y-

Barbara Liskov wins Turing Award
ACM cites 'foundational innovations' in programming language design

Barbara LISkOV

ACM’s A.M. Turing
Award Winner

-’g n 3 [';:‘1 Share =
t Toward

S €ps Institute Professor Barbara
Self-Aware Networks)

Liskov has won the
The Metropolis Model Association for Computing

Machinery's A.M. Turing
Why Computer Science Award, one of the highest
Doesn't Matter honors in science and

o engineering, for her

Probabilistic pioneering work in the
Databases

design of computer
programming languages.
Liskov's achievements
underpin virtually every
modern computing-related
convenience in people's daily
lives.

The Five-Minute Rule
20 Years Later

Liskov, the first U.S. woman E,‘:g:g',"DL;f“r“g"cOveney

to earn a PhD from a

computer science department, was recognized for helping make software more reliable,
consistent and resistant to errors and hacking. She is only the second woman to receive
the honor, which carries a $250,000 purse and is often described as the "Nobel Prize in
computing.”

Simple Violation of LSP

S drawSha peSO \{roid drawShapes (Shape shape)
references a base i.f (shape instanceof Square)
type Shape drawSquare ((Square)shape) ;
| }
@t VIOlateS. LSP else if (shape instance of Circle)
because it must {
kﬂOW Of every drawCircle ((Circle) shape) ;
}
derived type of }
Shape

<[t must be modified whenever new derivatives of Shape are
presented.

Adhering to LSP

class Shape

{

void draw ()

{//..}
}

class Circle extends Shape
{
private double itsRadius;
private Point itsCenter;
public void draw()

{ //..}
}

class Square extends Shape
{
private double itsSide;
private Point itsTopLeft;
public void draw ()

{ //..}
}

void drawShape (Shape s)
{

s.draw() ;

}

< drawShape now
adheres to LSP

Rectangle

class Rectangle

{

private int width;
private int height;

public void setWidth (int width)

{...}
public void setHeight (int height)

{...}
public int getWidth ()

{...}
public int getHeight ()

{...}

¢Rectangle class is released for general use

Square

<A Square class is required

$Square is introduced as a subclass of
Rectangle

At one level, this use of inheritance can be
considered appropriate:

<A Square is a rectangle whose width and height
are equal

<However, both width & height not needed
(just one).

<-Potential inefficiency if many rectangles
created (e.g. CAD application)

Rectangle

/\

Square

Rectangle Width & Height

< Both setWidth() and
setHeight() should not
vary independently

¢Client could easily call
one and not the other —-
thus compromising the
Rectangle

<-Potential solution is to
implement setWidth() a
setHeight() in Square
class

©These methods then

class Square extends Rectangle

{
public void setWidth (int width)

{
super .setWidth (width) ;
super . setHeight (width) ;

}
public void setHeight (int height)

{
super.setWidth (height) ;
super.setHeight (height) ;

}
}

~|

U

make sure width & height

are adjusted

10

Polymorphism

void £ (Rectangle r)

{
r.setWidth (5) ;

}

< Polymorphism ensures that:
<If the f() method is passed a Rectangle, then its width will be adjusted
+If passed a Square, then both height and width will be changed

@ Assume model is consistent & correct
“©-However....

11

More Subtle Problem

void g (Rectangle r)
{

r.setWidth (5) ;

r.setHeight (4) ;

assert (r.getWidth() * r.getHeight()) == 20;
}

<If r is a Rectangle instance
<g() methods works as expected

<If ris a Square
@ g() assertion is triggered

©g() assumes that width and height of a Rectangle can be
varied independently

< Substitution of a Square violates this assumption
$Square violates LSP

12

Validating the Model

<A model, viewed in isolation, cannot be meaningfully
validated

< The validity of a model can only be expressed in terms of its
clients:

<Examining the final version of the Square and Rectangle classes in
Isolation, we found that they were self consistent and valid.

<When we examined from the viewpoint of g() (which made reasonable
assumptions) the model broke down.
< Thus, when considering whether a design is appropriate or
not, it must must examined in terms of the reasonable
assumptions that will be made by the users of that design

13

Behavioural Problems

%A square might be a rectangle, but a Square object is not a
Rectangle object.

©the behaviour of a Square object is not consistent with the behaviour

of a Rectangle object.

©The LSP makes clear that inheritance relationship pertains
to behaviour

<Not intrinsic private behaviour, but extrinsic public
behaviour; behaviour that clients depend upon.

<g() depended on the fact that Rectangles behave such that

{

neir height and width vary independently of one another.

o

'hat independence of the two variables is an extrinsic

public behaviour that other methods are also likely to
depend upon.

14

Fragile Base Class Problem

class Stack extends ArrayList

{

private int stack pointer = 0;

public void push(Object article)

{ ArrayList
add(stack pointer++, article);

} A\

public Object pop()

{
return remove(--stack pointer);

}

public void push many(Object[] articles) Stack

{

for(int 1 = 0; i < articles.length; ++i)

push(articles[i])

15

Clearing the Stack

Stack a stack = new Stack();
a stack.push("1");

a stack.push("2");

a stack.clear();

< This code and uses the ArrayList's clear() method to pop
everything off the stack

< The code successfully executes, but since the base class
doesn't know anything about the stack pointer, the Stack
object Is now In an undefined state.

¢ The next call to push() puts the new item at index 2 (the
stack_pointer's current value), so the stack effectively has
three elements on it—the bottom two are garbage.

16

Use Composition instead of Inheritance

Stack <> ArrayList

17

Composed Solution

class Stack

{

private int stack pointer = 0;
private ArrayList the data = new ArrayList();

public void push(Object article)

{
the data.add(stack pointer++, article);

}

public Object pop ()
{

return the data.remove(--stack pointer);

}

public void push many(Object[] articles)

{
for(int 1 = 0; 1 < o.length; ++i)
push(articles[1i]);

18

Monitorable Stack

class Monitorable stack extends Stack
{
private int high water mark = 0;
private int current size;

public void push(Object article)
{
if(++current size > high water mark)
high water mark = current size;
super .push (article) ;
}
public Object pop()
{
-—-current size;
return super.pop() ;
}
public int maximum size so far()
{
return high water mark;
}
}

- Tracks the maximum
stack size over a
certain time period.

Stack

MonitorableStack

19

oush_many Implementation

void f (Stack s)

{
//...

s.push many (someObjectArray);

//...
}

+\Which class implements push_many nethod”?

<|f () is passed a MonitorableStack, does a call to
push_many update high_water_mark?

$Polymorphism ensures that MonitrableStack’s push
method is called, and hande high_water_mark is
appropriately updated.

< This is because Stack.push_many() calls the push()
method, which is overridden by MonitorableStack

20

Revised Stack

<A profiler is run against an implementation using Stack

<[t notices the Stack isn't as fast as it could be and is heavily
used.

¢ Stack is rewritten so it doesn't use an ArrayList and
consequently it gains a performance boost...

21

Revised Stack using Arrays

class Stack
{
private int stack pointer = -1;
private Object[] stack = new Object[1000];

public void push(Object article)
{
assert stack pointer < stack.length;
stack[++stack pointer] = article;
}
public Object pop ()
{
assert stack pointer >= 0;
return stack[stack pointer--];

}
public void push many(Object[] articles)

{
assert (stack pointer + articles.length) < stack.length;
System.arraycopy (articles, 0, stack, stack pointer+l,
articles.length) ;
stack pointer += articles.length;

}

22

Problems”?

void f (Stack s)

{
//...

s.push many (someObjectArray);

//...
}

<|f s is a MonitorableStack, is high_water_mark updated?

©No — because the new Stack base class push_many()
implementation does not call push() at all

¢ LSP Violation: i.e. function f() will not appropriately operate a
Stack derived object

23

Solution

interface Stack

{

Object pop() ;

}

void push(Object o);

void push many(Object[] source);

Stack

MonitorableStack

SimpleStack

24

Simple_Stack

class Simple Stack implements Stack
{
private int stack pointer = -1;
private Object[] stack = new Object[1000];

public void push(Object article)
{
assert stack pointer < stack.length;
stack[++stack pointer] = article;
}
public Object pop ()
{
assert stack pointer >= 0;
return stack[stack pointer--];

}
public void push many(Object[] articles)

{
assert (stack pointer + articles.length) < stack.length;
System.arraycopy (articles, 0, stack, stack pointer+l,
articles.length);
stack pointer += articles.length;

}

25

class Monitorable Stack implements Stack
{
private int high water mark = 0;
private int current size;
Simple stack stack = new Simple stack();
public void push(Object o)
{
if(++current size > high water mark)
high water mark = current size;
stack.push (o) ;
}
public Object pop ()
{
--current size;
return stack.pop();

}

public void push many(Object[] source)
{
if(current size + source.length > high water mark)
high water mark = current size + source.length;
stack.push many(source);

}

public int maximum size ()

{

return high water mark;

}

20

Consult Stack AP

Constructor Summary

Stack ()
Creates an empty Stack.

Method Summary

boolean

empty ()
Tests if this stack 15 empty.

|t

peek()
Looks at the object at the top of this stack without remowing it from the stack.

|td

pop ()
Removwes the object at the top of this stack and returns that object as the value of
this function.

|t

push(E item)
Pushes an tem onto the top of this stack.

int

search (Object o)
Returns the 1-based posttion where an object 1s on this stack.

Methods mherited from class java.util. Vector

add, add, addlll, addill, addElement, capacity, clear, clone, contains,
containsdll, copyInto, elementldt, elements, ensureCapacity, edquals,
firstElement, get, hashCode, indexOf, indexOf, insertElementldt, isEmpty,
lastElement, lastlIndexOf, lastIndexOf, remove, remove, removeldll,
removelllElements, removekElement, removeElementldt, removeRange, retaindll,

set, setElementdt, setiize, s3ize, sublist, toldrray, toldrray, toltring,
trimToSize

244

Stack i1s Derived from Vector

Overview Package [HErr]Use Tree Deprecated Index Help Java™ 2 Platform

PREV CLASS NEXT CLASS FRAMES NO FRAMES Standard Ed. 5.0
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD
java.util

Class Stack<E>

java. lang.Object
L—java.util.AbstractCollection<E>
L—java.util.AbstractList<E>
L—java.util.Uector<E>
L java.util.Stack<E>

All Immplemented Interfaces:
wenalizable, Cloneable, Iterable<E=, Collection<E>=, List<E>, Randoméccess

28

Holub’s Advice

¢|n general, it's best to avoid concrete base
classes and extends relationships in favour
of interfaces and implements relationships.

¢ Rule of thumb : 80 percent of code at
minimum should be written entirely in terms
of interfaces. HOIUD uh

< E.g. never use references to a HashMap, use Patterns
refereﬂces .to _the |\/|a|O Learning Design Patterns by Looking at Code

< The more abstraction you add, the greater
the flexibllity. Alen Houb

% |n today's business environment, where commsuins ApTeSS
requirements regularly change as the
program develops, this flexibility Is
essential.

-~

e o
THE EXPERT’S VOICE® IN SOPTWAREENGINEERINGIE 5 3' %
e i W
éfﬁ*ﬁ“ #
T
K - Rabads
A ‘f.'s’}s"’rﬂ'
AT

29

1

Waterford Institute of Technology

INSTITIUID TEICNEOLAIOCHTA PHORT LARCE

OIS

Except where otherwise noted, this content is
licensed under a Creative Commons Attribution-
NonCommercial 3.0 License.

For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

0

elLearning
support unit

