Mobile Application Development

Eamonn de Leastar (edeleastar@wit.ie)

Waterford Institute of Technology
INS JID TECNEOLAIOCHTA PHORT LAIRCE

mailto:edleastar@wit.ie

Streams

=
A

(-
m

Java Language Java Language

Tool APIs

Deployment

User Interface
Toolkits

Integration
Libraries

Other Base

Libraries Java SE
NI DateandTime InputOutput Internationalization ae!
Compact
lang and util Profiles
—— Collections Ref Objects Regular Expressions

lang and util
Base Libraries

Logging Management Instrumentation Concurrency Utilities

Reflection Versioning Preferences API JAR Zip

Java Virtual Machine Java HotSpot Client and Server VM

http://www.oracle.com/technetwork/java/javase/tech/index.html

http://www.oracle.com/technetwork/java/javase/tech/index.html

JDK vs Android SDK

Included in ADK

java.io - File and stream 1/O
java.lang (except
java.lang.management) - Language
and exceptions

support

java.math - Big numbers, rounding,
precision

java.net - Network 1I/O, URLs,
sockets

java.nio - File and channel I/0O
java.sql - Database interfaces
java.text - Formatting, natural
language, collation

java.util (including
java.util.concurrent) - Lists, maps,
sets, arrays, collections

java.security - Authorization,
certificates, public keys
javax.security (except
javax.security.auth.kerberos,
javax.security.auth.spi, and
javax.security.sasl)

javax.sound - Music and sound
effects

javax.sgl (except javax.sqgl.rowset) -
More database interfaces
javax.xml.parsers - XML parsing
org.w3c.dom (but not sub-
packages) - DOM nodes and
elements

org.xml.sax - Simple API for XML

JDK vs Android SDK

Excluded from ADK

java.applet
java.awt
java.beans
java.lang.management
java.rmi
javax.accessibility
javax.activity
javax.imageio
javax.management
javax.naming
javax.print
javax.rmi

javax.security.auth.kerberos
javax.security.auth.spi
javax.security.sasl

javax.swing

javax.transaction

javax.xml (except javax.xml.parsers)
org.ietf.”

org.omg.”

org.w3c.dom.* (sub-packages)

-
I~

JRE Other Base
Libraries

Compact
Profiles

lang and util
Base Libraries

Java Virtual Machine

Streams

4 An /O Stream represents an input source or an output
destination.

4 A stream can represent
¢ disk files
% devices
% other programs

4 Streams support
% simple bytes
< primitive data types
% localized characters
< objects.

© Some streams simply pass on data, others manipulate
and transform the data in useful ways.

Byte-Oriented Streams

ByteArrayOutputStream

ObjectInputStream

LineNumberlnputStream

PipedinputStream

PushbackInputStream

SequencelnputStream

/ FileOutputStream / BufferedOutputStream
OutputStream FilterOutputStream DataOutputStream
\\ ObjectOutputStream \ PrintStream
PipedOutputStream
Object
ByteArraylnputStream
BufferedInputStream
FileInputStream /
/ [DatalnputStream
InputStream FilterinputStream <

StringBufferinputStream

Text Oriented Streams

BufferedWriter

CharArrayWriter

FilterWriter

Writer

OutputStreamWriter

FileWriter

PipedWriter

PrintWriter

StringWriter

Object

BufferedReader

LineNumberReader

CharArrayReader

Reader

FilterReader

PushbackReader

InputStreamReader

FileReader

PipedReader

StringReader

Input/Output Streams

< A stream is a sequence of data.

< A Java program uses an input stream to read data from
a source, one item at a time:

disk files
program ——

device Data Source (9011010000)1001000011)1001010101)
socket |

array

Program

< A Java program uses an outputstream to write data to a
destination, one item at time:

Program

Stream

Data
(0011010000) 1001000011 J1001010101) Destination

Byte Streams

< Byte streams perform 1/O of
8-bit bytes.

< All byte stream classes are
descended from o
InputStream & /
OutputStream. =

< To read/write from files, use \
Filelnputstream and [InputStream — FilterinputStream

. \| ObjectinputStream
FI Ieo utputst ream .]PipedlnputStream PushbacklnputStream I

4 Other kinds of byte streams s
are used much the same
way; they differ mainly in the
way they are constructed.

ByteArrayOutputStream I

FileOutputStream | jBufferedOutputStream |

FilterOutputStream DataOutputStream |

ObjectOutputStream I PrintStream |

PipedOutputStream

ByteArraylnputStream

BufferedlnputStream

FilelnputStream

DatalnputStream

NS

LmeNumberInputStream |

ZaNZN

‘IStringBufferInputStream I

public class CopyBytes

{

public static void main(String[] args) throws

{

FileInputStream 1in = null;
FileOutputStream out = null;
try

{

}

in = new FileInputStream("input.txt");
out = new FileOutputStream("final.txt");
int c;
while ((c = in.read()) '= -1)
{

out.write(c);

}

finally

{

if (in '= null)
{

in.close () ;
}
if (out != null)
{

out.close () ;

}

CopyBytes

IOException

CopyBytes

< An int return type allows read() to
use -1 to indicate end of stream. Input Stream

& CopyBytes uses a finally blockto ~ © " a:”_? .
guarantee that both streams will be inputStrean. read (b)
closed even if an error occurs. this l
helps avoid resource leaks. eger Varisbl

< If CopyBytes was unable to open
one or both files the stream variable l

inputStream.write (b)
L

never changes from its initial null
value. Il n Xanadu
4 Byte streams should only be used oupster
for the most primitive 1/0.
< However, all other stream types are
built on byte streams.

v
d

Character Streams

% Java stores character -
values using Unicode / Crarraywiter]
FilterWriter I

é& Character Stream I/O Writer - Outp\:vtStreamWriterl—iFiIeWriter

automatically translates this \p.pedwme, |
PrintWriter I

to and from the local

StringWriter |

character set. [Ghiec |
< In Western locales, the local /h’*dydd :—ibdl
Character Set iS usua”y an |Reader éFilterReader |—|PushbackReader I

8-bit superset of ASCII. \Efdd :_"d I

< 1/0O with character stream
classes automatically
translates to/from the local
character set.

StringReader I

CopyCharacters

public class CopyCharacters

{

public static void main(String[] args) throws IOException

{

FileReader inputStream = null;
FileWriter outputStream = null;
try
{
inputStream = new FileReader ("input.txt");
outputStream = new FileWriter ("final.txt");
int c;
while ((c = inputStream.read()) !'= -1)
{
outputStream.write(c);
}
}
finally
{
if (inputStream != null)
{
inputStream.close() ;
}
if (outputStream != null)
{
outputStream.close () ;

}

10

CopyCharacters vs CopyBytes

4 CopyCharacters is very similar to CopyBytes.
< CopyCharacters uses FileReader and FileWriter
% CopyBytes uses FilelnputStream and FileOutputStream.

< Both use an int variable to read to and write from.

% CopyCharacters int variable holds a character value in its last 16
bits
% CopyBytes int variable holds a byte value in its last 8 bits

4 Character streams are often "wrappers" for byte
streams.

< A byte stream to perform the physical I/O

“The character stream handles translation between
characters and bytes.

< E.g. FileReader uses FilelnputStream, while FileWriter
uses FileOutputStream. "

Buffered 10

© So far we have used unbuffered I/0:

<% Each read or write request is handled directly by the underlying
OS.

% Can be less efficient, since each such request often triggers
disk or network access.

© To reduce this kind of overhead use buffered I/O
streams.

% Read data from a memory area known as a buffer

< Native input APl is called only when the buffer is empty.
< Buffered output streams write data to a buffer

% Native output API is called only when the buffer is full.

12

Line-Oriented |O

% Character I/O usually occurs in bigger units than single
characters.

% One common unit is the line:
% a string of characters with a line terminator at the end.

4 A line terminator can be
% a carriage-return/line-feed sequence ("\r\n")
% a single carriage-return ("\r"), or a single line-feed ("\n").

4 Supporting all possible line terminators allows programs
to read text files created on any of the widely used
operating systems.

13

public class CopyLines

{

public static void main(String[] args) throws IOException

{

BufferedReader inputStream = null;
PrintWriter outputStream = null;
try

{

CopyLines

inputStream = new BufferedReader (new FileReader ("xanadu.txt"));
outputStream = new PrintWriter (new FileWriter ('"characteroutput.txt"));

String 1;
while ((1 = inputStream.readLine())
{
outputStream.println(l);
}
}
finally
{
if (inputStream !'= null)
{
inputStream.close() ;

}

if (outputStream !'= null)
{
outputStream.close () ;

}

1= null)

14

BufferedReader

© An unbuffered stream can be converted into a
buffered stream using the wrapper idiom:

4 The unbuffered stream object is passed to the
constructor for a buffered stream class.

try
{
inputStream = new BufferedReader (new FileReader ("input.txt"))
outputStream = new PrintWriter (
new BufferedWriter (
new FileWriter ('"characteroutput.txt")));

String 1;

while ((1 = inputStream.readLine()) !'= null)

{
outputStream.println(l);

}
}

15

Data Streams

¢ Data streams support binary

|/O of primitive data type

ByteArrayOutputStream

FlIeOutputStream BufferedOutputStream I

values (boolean, char, byte,
[OutputStream

FilterOutputStream DataOutputStream

ObjectOutputStream PrintStream

short, int, long, float, and
double) as well as String /

PipedOutputStream

| Object

values.

ByteArrayInputStream

Buffered InputStream |

4 All data streams implementlmpmstream

FilelnputStream

DatalnputStream

FllterlnputStream

either the Datalnput interface

LineNumberlnputStream |

_A___ _

ObjectinputStream

PushbackInputStream |

or the DataOutput interface.

| PipedinputStream I

% The most widely-used
implementations of these
interfaces are
DatalnputStream and
DataOutputStream.

SequencelnputStream

S
”
\

StringBufferlnputStream I

29

http://java.sun.com/javase/6/docs/api/java/io/DataInput.html
http://java.sun.com/javase/6/docs/api/java/io/DataOutput.html
http://java.sun.com/javase/6/docs/api/java/io/DataInputStream.html
http://java.sun.com/javase/6/docs/api/java/io/DataOutputStream.html

DataStream (1)

public class DataStream

{

static final String dataFile = "invoicedata';,
static final double[] prices = { 19.99, 9.99, 15.99, 3.99, 4.99 };
static final int[] units = { 12, 8, 13, 29, 50 },
static final String[] descs = { "Java T-shirt", '"Java Mug",
"Duke Juggling Dolls",
"Java Pin", "Java Key Chain"};

public static void main(String[] args) throws IOException
{
DataOutputStream out = new DataOutputStream (
new BufferedOutputStream(new FileOutputStream(dataFile))),

for (int 1 = 0; i < prices.length,; i++)
{
out.writeDouble (prices[i])
out.writeInt(units[i]),
out.writeUTF (descs[i]),

}

out.close() ;

//..continued

DataStream (2)

DataInputStream in = new DataInputStream(
new BufferedInputStream (
new FileInputStream(dataFile))),

double price;
int unit;
String desc;
double total = 0.0;
try
{
while (true)
{
price = in.readDouble() ;
unit = in.readInt()
desc = in.readUTF() ;
System.out. format ("You ordered %d units of $%s at $%.2f%n"

unit, desc, price);,

/7

total += unit * price;
}
}
catch (EOFException e)
{
System.out.println("End of file');,
}

31

Data Streams Observations

< The writeUTF method writes out String values in a
modified form of UTF-8.

% A variable-width character encoding that only needs a single
byte for common Western characters.
< Generally, we detects an end-of-file condition by
catching EOFException, instead of testing for an invalid
return value.

% Each specialized write in DataStreams is exactly
matched by the corresponding specialized read.

% Floating point numbers not recommended for monetary
values
% In general, floating point is bad for precise values.
% The correct type to use for currency values is
java.math.BigDecimal.
< Unfortunately, BigDecimal is an object type, so it won't
work with data streams — need Object Streams. 32

http://java.sun.com/javase/6/docs/api/java/io/EOFException.html
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html

Waterford Institute of Technology

N WSTINOID TECNEOLAIOCHTA PHORT LARGE

OIS

Except where otherwise noted, this content is
licensed under a Creative Commons
Attribution-NonCommercial 3.0 License.

For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

>

eLearning
support unit

