
Produced
by

Eamonn de Leastar (edeleastar@wit.ie)

Mobile Application Development

mailto:edleastar@wit.ie

Streams

http://www.oracle.com/technetwork/java/javase/tech/index.html

http://www.oracle.com/technetwork/java/javase/tech/index.html

JDK vs Android SDK

• java.io - File and stream I/O!
• java.lang (except

java.lang.management) - Language
and exceptions!

• support!
• java.math - Big numbers, rounding,

precision!
• java.net - Network I/O, URLs,

sockets!
• java.nio - File and channel I/O!
• java.sql - Database interfaces!
• java.text - Formatting, natural

language, collation!
• java.util (including

java.util.concurrent) - Lists, maps,
sets, arrays, collections

4

Included in ADK

• java.security - Authorization,
certificates, public keys!

• javax.security (except
javax.security.auth.kerberos,
javax.security.auth.spi, and
javax.security.sasl)!

• javax.sound - Music and sound
effects!

• javax.sql (except javax.sql.rowset) -
More database interfaces!

• javax.xml.parsers - XML parsing!
• org.w3c.dom (but not sub-

packages) - DOM nodes and
elements!

• org.xml.sax - Simple API for XML

5

JDK vs Android SDK
Excluded from ADK

• java.applet!
• java.awt!
• java.beans!
• java.lang.management!
• java.rmi!
• javax.accessibility!
• javax.activity!
• javax.imageio!
• javax.management!
• javax.naming!
• javax.print!
• javax.rmi

• javax.security.auth.kerberos!
• javax.security.auth.spi!
• javax.security.sasl!
• javax.swing!
• javax.transaction!
• javax.xml (except javax.xml.parsers)!
• org.ietf.*!
• org.omg.*!
• org.w3c.dom.* (sub-packages)

ADK

4

Streams

± An I/O Stream represents an input source or an output
destination.

± A stream can represent

± disk files

± devices

± other programs

± Streams support

± simple bytes

± primitive data types

± localized characters

± objects.

± Some streams simply pass on data, others manipulate
and transform the data in useful ways.

2

Byte-Oriented Streams

3

Text Oriented Streams

5

Input/Output Streams
± A stream is a sequence of data.

± A Java program uses an input stream to read data from

a source, one item at a time:

± A Java program uses an output stream to write data to a
destination, one item at time:

disk files
program
device
socket
array

6

Byte Streams
± Byte streams perform I/O of

8-bit bytes.

± All byte stream classes are

descended from
InputStream &
OutputStream.

± To read/write from files, use
FileInputStream and
FileOutputStream.

± Other kinds of byte streams
are used much the same
way; they differ mainly in the
way they are constructed.

7

CopyBytes
public class CopyBytes
{
 public static void main(String[] args) throws IOException
 {
 FileInputStream in = null;
 FileOutputStream out = null;
 try
 {
 in = new FileInputStream("input.txt");
 out = new FileOutputStream("final.txt");
 int c;
 while ((c = in.read()) != -1)
 {
 out.write(c);
 }
 }
 finally
 {
 if (in != null)
 {
 in.close();
 }
 if (out != null)
 {
 out.close();
 }
 }
 }
}

8

CopyBytes
± An int return type allows read() to

use -1 to indicate end of stream.

± CopyBytes uses a finally block to

guarantee that both streams will be
closed even if an error occurs. this
helps avoid resource leaks.

± If CopyBytes was unable to open
one or both files the stream variable
never changes from its initial null
value.

± Byte streams should only be used
for the most primitive I/O.

± However, all other stream types are
built on byte streams.

9

Character Streams

± Java stores character
values using Unicode

± Character stream I/O
automatically translates this
to and from the local
character set.

± In Western locales, the local
character set is usually an
8-bit superset of ASCII.

± I/O with character stream
classes automatically
translates to/from the local
character set.

10

CopyCharacters
public class CopyCharacters
{
 public static void main(String[] args) throws IOException
 {
 FileReader inputStream = null;
 FileWriter outputStream = null;
 try
 {
 inputStream = new FileReader("input.txt");
 outputStream = new FileWriter("final.txt");
 int c;
 while ((c = inputStream.read()) != -1)
 {
 outputStream.write(c);
 }
 }
 finally
 {
 if (inputStream != null)
 {
 inputStream.close();
 }
 if (outputStream != null)
 {
 outputStream.close();
 }
 }
 }
}

11

CopyCharacters vs CopyBytes
± CopyCharacters is very similar to CopyBytes.

± CopyCharacters uses FileReader and FileWriter

± CopyBytes uses FileInputStream and FileOutputStream.

± Both use an int variable to read to and write from.

± CopyCharacters int variable holds a character value in its last 16

bits

± CopyBytes int variable holds a byte value in its last 8 bits

± Character streams are often "wrappers" for byte
streams.

±A byte stream to perform the physical I/O

±The character stream handles translation between

characters and bytes.

± E.g. FileReader uses FileInputStream, while FileWriter

uses FileOutputStream.

12

Buffered IO

± So far we have used unbuffered I/O:

± Each read or write request is handled directly by the underlying

OS.

± Can be less efficient, since each such request often triggers

disk or network access.

± To reduce this kind of overhead use buffered I/O

streams.

± Read data from a memory area known as a buffer

± Native input API is called only when the buffer is empty.

± Buffered output streams write data to a buffer

± Native output API is called only when the buffer is full.

13

Line-Oriented IO
± Character I/O usually occurs in bigger units than single

characters.

± One common unit is the line:

± a string of characters with a line terminator at the end.

± A line terminator can be

± a carriage-return/line-feed sequence ("\r\n")

± a single carriage-return ("\r"), or a single line-feed ("\n").

± Supporting all possible line terminators allows programs
to read text files created on any of the widely used
operating systems.

14

public class CopyLines
{
 public static void main(String[] args) throws IOException
 {
 BufferedReader inputStream = null;
 PrintWriter outputStream = null;
 try
 {
 inputStream = new BufferedReader(new FileReader("xanadu.txt"));
 outputStream = new PrintWriter(new FileWriter("characteroutput.txt"));
 String l;
 while ((l = inputStream.readLine()) != null)
 {
 outputStream.println(l);
 }
 }
 finally
 {
 if (inputStream != null)
 {
 inputStream.close();
 } !
 if (outputStream != null)
 {
 outputStream.close();
 }
 }
 }
}

CopyLines

15

BufferedReader
± An unbuffered stream can be converted into a

buffered stream using the wrapper idiom:

± The unbuffered stream object is passed to the

constructor for a buffered stream class.
 try
 {
 inputStream = new BufferedReader(new FileReader("input.txt"));
 outputStream = new PrintWriter(
 new BufferedWriter(
 new FileWriter("characteroutput.txt"))); !
 String l; !
 while ((l = inputStream.readLine()) != null)
 {
 outputStream.println(l);
 }
 }

29

Data Streams
± Data streams support binary

I/O of primitive data type
values (boolean, char, byte,
short, int, long, float, and
double) as well as String
values.

± All data streams implement
either the DataInput interface
or the DataOutput interface.

± The most widely-used
implementations of these
interfaces are
DataInputStream and
DataOutputStream.

http://java.sun.com/javase/6/docs/api/java/io/DataInput.html
http://java.sun.com/javase/6/docs/api/java/io/DataOutput.html
http://java.sun.com/javase/6/docs/api/java/io/DataInputStream.html
http://java.sun.com/javase/6/docs/api/java/io/DataOutputStream.html

30

DataStream (1)
public class DataStream
{
 static final String dataFile = "invoicedata";
 static final double[] prices = { 19.99, 9.99, 15.99, 3.99, 4.99 };
 static final int[] units = { 12, 8, 13, 29, 50 };
 static final String[] descs = { "Java T-shirt", "Java Mug",
 "Duke Juggling Dolls",
 "Java Pin", "Java Key Chain"}; !
 public static void main(String[] args) throws IOException
 {
 DataOutputStream out = new DataOutputStream(
 new BufferedOutputStream(new FileOutputStream(dataFile))); !
 for (int i = 0; i < prices.length; i++)
 {
 out.writeDouble(prices[i]);
 out.writeInt(units[i]);
 out.writeUTF(descs[i]);
 }
 out.close(); !
 //…continued

31

DataStream (2)
 DataInputStream in = new DataInputStream(
 new BufferedInputStream(
 new FileInputStream(dataFile)));
 double price;
 int unit;
 String desc;
 double total = 0.0;
 try
 {
 while (true)
 {
 price = in.readDouble();
 unit = in.readInt();
 desc = in.readUTF();
 System.out.format("You ordered %d units of %s at $%.2f%n",
 unit, desc, price);
 total += unit * price;
 }
 }
 catch (EOFException e)
 {
 System.out.println("End of file");
 }
 }
}

32

Data Streams Observations
± The writeUTF method writes out String values in a

modified form of UTF-8.

± A variable-width character encoding that only needs a single

byte for common Western characters.

± Generally, we detects an end-of-file condition by

catching EOFException, instead of testing for an invalid
return value.

± Each specialized write in DataStreams is exactly
matched by the corresponding specialized read.

± Floating point numbers not recommended for monetary
values

± In general, floating point is bad for precise values.

± The correct type to use for currency values is

java.math.BigDecimal.

± Unfortunately, BigDecimal is an object type, so it won't

work with data streams – need Object Streams.

http://java.sun.com/javase/6/docs/api/java/io/EOFException.html
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html

Except where otherwise noted, this content is
licensed under a Creative Commons
Attribution-NonCommercial 3.0 License.
!
For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

