
Produced  
by

Department of Computing, Maths & Physics

Waterford Institute of Technology
http://www.wit.ie

http://elearning.wit.ie

Higher Diploma in Science in Computer Science

Mobile Application Development

Eamonn de Leastar (edeleastar@wit.ie)


mailto:edleastar@wit.ie


Modeling & Testing witpressapp



Blog

• Each user can have a blog


• A blog consists of multiple ’Posts’


• Each Post consists of:


• Title


• Content
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User
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@Entity
public class User extends Model
{ 
  public String firstName;
  public String lastName;
  public String email;
  public String password;
  
  @OneToMany(cascade=CascadeType.ALL)
  public List<Post> posts;
  
  public User(String firstName, String lastName,String email, String password)
  {
    this.firstName = firstName;
    this.lastName = lastName;   
    this.email = email;
    this.password = password;
    posts = new ArrayList<Post>();
  }
  
  public void addPost (Post post)
  {
    posts.add(post);
  }
  
  public static User findByEmail(String email)
  {
    return find("email", email).first();
  }

  public boolean checkPassword(String password)
  {
    return this.password.equals(password);
  }  
}



Post
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@Entity
public class Post extends Model
{
  public String title;
  @Lob
  public String content;

  @OneToMany(cascade = CascadeType.ALL)
  public List<Comment> comments;

  public Post(String title, String content)
  {
    this.title = title;
    this.content = content;
    this.comments = new ArrayList<Comment>();
  }

  public void addComment(Comment comment)
  {
    comments.add(comment);
  }

  public String toString()
  {
    return title;
  }
}



Comment
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@Entity
public class Comment extends Model
{
  public String content;
 
  public Comment(String content)
  {
    this.content = content;
  }
}



Model
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• Each class represented by a simple 
rectangle


• If a class is ‘aware’ of another class, 
then draw a line connecting them.


• These lines are called ‘associations’



Model
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• Enrich the associations with 
extra information


• Navigability


• Role name


• Cardinality



Navigability
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• Indicates whether one class can be ‘reached’ from another


• eg:


• User maintains a collection of posts


• However, posts (in this model at least) are unaware of the user they 
belong to

public class User extends Model
{ 
  //...
  @OneToMany(cascade=CascadeType.ALL)
  public List<Post> posts;
  //...
}

public class Post extends Model
{
  //..
}



Role Name
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• The name of the attribute used to traverse the navigable path


• eg:


• User Post collection is called ‘posts’


• Drawn at the ‘other’ end of the association

public class User extends Model
{ 
  //...
  @OneToMany(cascade=CascadeType.ALL)
  public List<Post> posts;
  //...
}

public class Post extends Model
{
  //..
}



Cardinality
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• How objects will be managed during the application lifecycle


• 1 - a one-to-one relationship


• 0..* - a zero-to-many relationship


• OneToMany == 0..* in modeling terms (as the collection can be empty)

public class User extends Model
{ 
  //...
  @OneToMany(cascade=CascadeType.ALL)
  public List<Post> posts;
  //...
}

public class Post extends Model
{
  //..
}



Witpress Model
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Testing 
witpress (1)

• Exercise 1


• Write these 
tests
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Testing witpress (3)

• Exercise 2 

• Currently a Blog is not modeled - a blog just a collection of posts. Model a 
Blog as a first class object, developing tests to verify the implementation 
as you go. Do this in two versions:


• Each user can have a single blog.


• Each user may have zero or more blogs


• Dont worry about the UI, just focus on the tests
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