
Produced
by

Department of Computing, Maths & Physics

Waterford Institute of Technology
http://www.wit.ie

http://elearning.wit.ie

Higher Diploma in Science in Computer Science

Mobile Application Development

Eamonn de Leastar (edeleastar@wit.ie)

mailto:edleastar@wit.ie

Modeling & Testing witpressapp

Blog

• Each user can have a blog

• A blog consists of multiple ’Posts’

• Each Post consists of:

• Title

• Content

3

User

4

@Entity
public class User extends Model
{
 public String firstName;
 public String lastName;
 public String email;
 public String password;

 @OneToMany(cascade=CascadeType.ALL)
 public List<Post> posts;

 public User(String firstName, String lastName,String email, String password)
 {
 this.firstName = firstName;
 this.lastName = lastName;
 this.email = email;
 this.password = password;
 posts = new ArrayList<Post>();
 }

 public void addPost (Post post)
 {
 posts.add(post);
 }

 public static User findByEmail(String email)
 {
 return find("email", email).first();
 }

 public boolean checkPassword(String password)
 {
 return this.password.equals(password);
 }
}

Post

5

@Entity
public class Post extends Model
{
 public String title;
 @Lob
 public String content;

 @OneToMany(cascade = CascadeType.ALL)
 public List<Comment> comments;

 public Post(String title, String content)
 {
 this.title = title;
 this.content = content;
 this.comments = new ArrayList<Comment>();
 }

 public void addComment(Comment comment)
 {
 comments.add(comment);
 }

 public String toString()
 {
 return title;
 }
}

Comment

6

@Entity
public class Comment extends Model
{
 public String content;

 public Comment(String content)
 {
 this.content = content;
 }
}

Model

7

• Each class represented by a simple
rectangle

• If a class is ‘aware’ of another class,
then draw a line connecting them.

• These lines are called ‘associations’

Model

8

• Enrich the associations with
extra information

• Navigability

• Role name

• Cardinality

Navigability

9

• Indicates whether one class can be ‘reached’ from another

• eg:

• User maintains a collection of posts

• However, posts (in this model at least) are unaware of the user they
belong to

public class User extends Model
{
 //...
 @OneToMany(cascade=CascadeType.ALL)
 public List<Post> posts;
 //...
}

public class Post extends Model
{
 //..
}

Role Name

10

• The name of the attribute used to traverse the navigable path

• eg:

• User Post collection is called ‘posts’

• Drawn at the ‘other’ end of the association

public class User extends Model
{
 //...
 @OneToMany(cascade=CascadeType.ALL)
 public List<Post> posts;
 //...
}

public class Post extends Model
{
 //..
}

Cardinality

11

• How objects will be managed during the application lifecycle

• 1 - a one-to-one relationship

• 0..* - a zero-to-many relationship

• OneToMany == 0..* in modeling terms (as the collection can be empty)

public class User extends Model
{
 //...
 @OneToMany(cascade=CascadeType.ALL)
 public List<Post> posts;
 //...
}

public class Post extends Model
{
 //..
}

Witpress Model

12

Testing
witpress (1)

• Exercise 1

• Write these
tests

13

Testing witpress (3)

• Exercise 2

• Currently a Blog is not modeled - a blog just a collection of posts. Model a
Blog as a first class object, developing tests to verify the implementation
as you go. Do this in two versions:

• Each user can have a single blog.

• Each user may have zero or more blogs

• Dont worry about the UI, just focus on the tests

14

Except where otherwise noted, this content is
licensed under a Creative Commons
Attribution-NonCommercial 3.0 License.

For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

