
Produced
by

Department of Computing, Maths & Physics

Waterford Institute of Technology
http://www.wit.ie

http://elearning.wit.ie

Higher Diploma in Science in Computer Science

Mobile Application Development

Eamonn de Leastar (edeleastar@wit.ie)

mailto:edleastar@wit.ie

JPA Modelling: OneToMany, ManyToOne

Object Relational Mapping - ORM

• Object oriented programming languages Vs Relational
DBMS

• OO -> Classes, Objects, Methods, Inheritance,
Polymorphism

• Relational Model -> Tables, Row, Columns, Keys,
Store Prodedures.

Impedance mismatch

OO model Relational model

Class, object Table, row

Attributes Columns

Identity Primary key

Methods Stored procedures

Inheritance Not supported

Polymorphism Not supported

Java Persistence API

• JPA is an API

• Implemented by a persistence provider

• Some persistence providers

• Hibernate from JBoss

• TopLink from Oracle

• JPA defined a runtime Entity Manger API processing queries and
transaction on the objects against the database.

• It is defined a objects-level query language JPQL to allow querying of
the objects from the database.

Persistence API-Entities

• Entity
– A table in a database.
– An Entity is represented by a class
– Instance of entity corresponds to a row in the

database.
– A number of rules cover the implementation of an

entity class.

12

Persistence API-Entity Relationships

• Relationships are the same as relationships between
tables in a database:
– One-To-One:

• Each instance of the entity (row) is related to single instance of
another entity (to a single row of another table).

– One-To-Many:
• An entity instance can be related to more than one instance of

another entity. But an instance of the other Entity can only relate to
one instance of the first.

13

Persistence API-Entity Relationships

– Many-To-One:
• Multiple instances (rows) of an Entity can be related to one instance

of another Entity. But an instance of the other Entity can relate to
only one instance of the first Entity.

– Many-To-Many:
• An instance of one Entity relates to many instances of another Entity

and vice versa.
• For every relationship there is an owning	 side and inverse

side.
– The relationship can be unidirectional –it has only an owning side.
– Or, bidirectional – it ha s both an owning side and an inverse side.

14

Example Relationships

15

Authors
Titles

Publishers

Many	 To	 Many	 	
bidirectional

Owner

Inverse

One-‐To-‐Many	
Bidirectional

Owner

Inverse

Inverse Owner

One-‐To-‐Many	
Bidirectional

The class EntityManager

• EntityManager is the most important class of JPA
– Full name javax.persistence.EntityManager

• Some methods of EntityManager
– T find(primaryKey)
– Query createQuery(String jpql)

• Creates a JPQL query
– Query createNativeQuery(String sql)

• Creates a SQL query
• Some methods of Query

– List getResultList()
• Executes a Query and returns a list of objects

Introduction to JPA

Java Persistence Query Language (JPQL)
• Very much like ordinary SQL - But not specific to any

DBMS

• JPA converts JPQL to ordinary SQL for the actual DBMS

Entity Lifecycle

• Entity Objects are
carefully managed by
JPA Implementations

• This involves support
for transactions,
commit, rollback and
various operations
required by a resilient
enterprise
applications

Play & JPA
• Play simplifies and encapsulates JPA

• Play will automatically start the Hibernate
entity manager when it finds one or more
classes annotated with the
@javax.persistence.Entity annotation.

• When the JPA entity manager is started
you can get it from the application code,
using the JPA helper.

public static index()
{
 Query query = JPA.em().createQuery("select * from Article");
 List<Article> articles = query.getResultList();
 render(articles);
}

https://www.playframework.com/documentation/1.2.7/jpa

Transaction management

• Play will automatically manage transactions.

• It will start a transaction for each HTTP request and
commit it when the HTTP response is sent. If your code
throws an exception, the transaction will automatically
rollback.

• If you need to force transaction rollback from the
application code, you can use the JPA.setRollbackOnly()
method, which tells JPA not to commit the current
transaction.

The play.db.jpa.Model support class
• This is the main helper

class for JPA. If you make
one of your JPA entities
extend the Model class, it
will give you a lot of helper
methods to simplify the JPA
access.

• The Model class
automatically provides an
autogenerated Long id field.

@Entity
public class Post extends Model
{
 public String title;
 public String content;
 public Date postDate;

 @ManyToOne
 public Author author;

 @OneToMany
 public List<Comment> comments;
}

Finding objects

• Find by ID

• Find all

• Find using a
simplified
query

Post aPost = Post.findById(5L);

List<Post> posts = Post.findAll();
List<Post> posts = Post.all().fetch();

// 100 max posts
List<Post> posts = Post.all().fetch(100);
// 100 max posts start at 50
List<Post> posts = Post.all().from(50).fetch(100);

Post.find("byTitle", "My first post").fetch();
Post.find("byTitleLike", "%hello%").fetch();
Post.find("byAuthorIsNull").fetch();
Post.find("byTitleLikeAndAuthor", "%hello%", connectedUser).fetch();

Simplified Queries

• Simple queries follow the
syntax [Property]
[Comparator]And?

• LessThan - less than the given value
• LessThanEquals - less than or equal a give

value
• GreaterThan - greater than a given value
• GreaterThanEquals - greater than or equal

a given value
• Like - Equivalent to a SQL like expression,

except that the property will always
convert to lower case.

• Ilike - Similar to a Like, except case
insensitive, meaning that your argument
will convert to lower case too.

• Elike - Equivalent to a SQL like expression,
no conversion.

• NotEqual - Negates equality
• Between - Between two values (requires two

arguments)
• IsNotNull - Not a null value (doesn’t require

an argument)
• IsNull - Is a null value (doesn’t require an

argument)

Explicit Save

• All the persistent objects extending the Model class will
not be saved without an explicit call to the save() method.

• This differs from default Hibernate implementations,
which implicitly manage the object lifecycle,
synchronising with transactions support

• The Play model is simpler to grasp, but can lead to some
complexities when editing / changing objects in
relationships

Explore JPA via JUnit Testing

• The most direct way of learning JPA - or any persistence technology - is
to write simple unit tests.

• These tests should explore all aspects of the potential relationships,
particularly:

• Create

• Read

• Update

• Delate

• Rely on the unit tests to yield verify API sequence calls.

20

21

Club Class

22

Player Class

23

ClubTest

24

PlayerTest

25

26

27

PlayerTest

28

29

toString + //@After

30

public class Player extends Model
{
 public String name;

 @ManyToOne
 public Club club;

 public Player(String name)
 {
 this.name = name;
 }

 public String toString()
 {
 return name;
 }
}

public class PlayerTest extends UnitTest
{
 private Player p1, p2, p3;

 @Before
 public void setup()
 {
 p1 = new Player("mike");
 p2 = new Player("jim");
 p3 = new Player("frank");
 p1.save();
 p2.save();
 p3.save();
 }

 //@After
 public void teardown()
 {
 p1.delete();
 p2.delete();
 p3.delete();
 }

 @Test
 public void testCreate()
 {
 Player a = Player.findByName("mike");
 assertNotNull(a);
 assertEquals("mike", a.name);
 Player b = Player.findByName("jim");
 assertNotNull(b);
 assertEquals("jim", b.name);
 Player c = Player.findByName("frank");
 assertNotNull(c);
 assertEquals("frank", c.name);
 }

• We can use Admin
interface while
project is in ‘test’
mode

• Enables us to
understand model
as we evolve
classes and their
relationships

31

 private Player p1, p2, p3;

 public void setup()
 {
 p1 = new Player("mike");
 p2 = new Player("jim");
 p3 = new Player("frank");
 p1.save();
 p2.save();
 p3.save();
 }

Some Player Tests

32

 @Test
 public void testCreate()
 {
 Player a = Player.findByName("mike");
 assertNotNull(a);
 assertEquals("mike", a.name);
 Player b = Player.findByName("jim");
 assertNotNull(b);
 assertEquals("jim", b.name);
 Player c = Player.findByName("frank");
 assertNotNull(c);
 assertEquals("frank", c.name);
 }

 @Test
 public void testNotThere()
 {
 Player a = Player.findByName("george");
 assertNull(a);
 }

ClubTest

33

public class ClubTest extends UnitTest
{
 private Club c1, c2, c3;

 @Before
 public void setup()
 {
 c1 = new Club("tramore");
 c2 = new Club("dunmore");
 c3 = new Club("fenor");
 c1.save();
 c2.save();
 c3.save();
 }

 @After
 public void teardown()
 {
 c1.delete();
 c2.delete();
 c3.delete();
 }

 @Test
 public void testCreate()
 {
 Club a = Club.findByName("tramore");
 assertNotNull(a);
 assertEquals("tramore", a.name);
 Club b = Club.findByName("dunmore");
 assertNotNull(b);
 assertEquals("dunmore", b.name);
 Club c = Club.findByName("fenor");
 assertNotNull(c);
 assertEquals("fenor", c.name);
 }

 @Test
 public void testNotThere()
 {
 Club a = Club.findByName("bunmahon");
 assertNull(a);
 }
}

Multiplicity & Navigation

• Club has a collection of zero or more players

• Players are unaware of Club

34

Implementation Relationship in Java Classes

35

public class Club extends Model
{
 public String name;

 @OneToMany(cascade=CascadeType.ALL)
 public List<Player> players;

 public Club(String name)
 {
 this.name = name;
 this.players = new ArrayList<Player>();
 }

 public String toString()
 {
 return name;
 }

 public void addPlayer(Player player)
 {
 players.add(player);
 }
}

public class Player extends Model
{
 public String name;

 public Player(String name)
 {
 this.name = name;
 }

 public String toString()
 {
 return name;
 }
}

Testing the Player / Club Relationship

• Use the fixture to set up
some club / relationships

36

 @Before
 public void setup()
 {
 p1 = new Player("mike");
 p2 = new Player("jim");
 p3 = new Player("frank");

 c1 = new Club("tramore");
 c2 = new Club("dunmore");
 c3 = new Club("fenor");

 c1.addPlayer(p1);
 c1.addPlayer(p2);

 c1.save();
 c2.save();
 c3.save();
 }

testPlayers

• In the test, see if
these relationship
have been
established

37

 @Test
 public void testPlayers()
 {
 Club tramore = Club.findByName("tramore");

 assertEquals (2, tramore.players.size());

 Player mike = Player.findByName("mike");
 Player jim = Player.findByName("jim");
 Player frank = Player.findByName("framk");

 assertTrue (tramore.players.contains(mike));
 assertTrue (tramore.players.contains(jim));
 assertFalse (tramore.players.contains(frank));
 }

testRemovePlayers

• Removing relationships
must also be tested

38

 @Test
 public void testRemovePlayer()
 {
 Club tramore = Club.findByName("tramore");
 assertEquals(2, tramore.players.size());

 Player mike = Player.findByName("mike");
 assertTrue(tramore.players.contains(mike));
 tramore.players.remove(mike);
 tramore.save();

 Club c = Club.findByName("tramore");
 assertEquals(1, c.players.size());

 mike.delete();
 }

Explore the Relationship in the Database

39

 @Before
 public void setup()
 {
 p1 = new Player("mike");
 p2 = new Player("jim");
 p3 = new Player("frank");

 c1 = new Club("tramore");
 c2 = new Club("dunmore");
 c3 = new Club("fenor");

 c1.addPlayer(p1);
 c1.addPlayer(p2);

 c1.save();
 c2.save();
 c3.save();
 }

Bidirectional Relationship

• Club has a ‘one to many’ relationship with players

• Player has a ‘many to one’ relationship with club

40

Bidirectional Relationship in Java Classes

41

public class Player extends
Model
{
 public String name;

 @ManyToOne
 public Club club;

 public Player(String name)
 {
 this.name = name;
 }

 public String toString()
 {
 return name;
 }
}

public class Club extends Model
{
 public String name;

 @OneToMany(mappedBy="club", cascade=CascadeType.ALL)
 public List<Player> players;

 public Club(String name)
 {
 this.name = name;
 this.players = new ArrayList<Player>();
 }

 public String toString()
 {
 return name;
 }

 public void addPlayer(Player player)
 {
 player.club = this;
 players.add(player);
 }
}

42

Except where otherwise noted, this content is
licensed under a Creative Commons
Attribution-NonCommercial 3.0 License.

For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

