Mobile Application Development

Higher Diploma in Science in Computer Science

Eamonn de Leastar (edeleastar@wit.ie)

Department of Computing, Maths & Physics
Waterford Institute of Technology

http://www.wit.ie

http://elearning.wit.ie

Waterford Institute of Technology o eLearnting .
support unit

%\ - INSTITIOID TECNEOLAIOCHTA PHORT LARCE
| (T e

T —

mailto:edleastar@wit.ie

PA Modelling: One

oMany, Many

0o0One

Object Relational Mapping - ORM

+ Object oriented programming languages Vs Relational
DBMS

+ 00 -> Classes, Objects, Methods, Inheritance,
Polymorphism

+ Relational Model -> Tables, Row, Columns, Keys,
Store Prodedures.

Impedance mismatch

OO model Relational model
Class, object Table, row
Attributes Columns
|dentity Primary key
Methods Stored procedures
Inheritance Not supported
Polymorphism Not supported

Java Persistence AP]

- JPAIs an AP

- Implemented by a persistence provider
+ Some persistence providers

- Hibernate from JBoss

- TopLink from Oracle

-+ JPA defined a runtime Entity Manger API| processing queries and
transaction on the objects against the database.

- |t is defined a objects-level query language JPQL to allow querying of
the objects from the database.

Persistence API-Entities

- Entity

A table in a database.
An Entity Is represented by a class

Instance of entity corresponds to a row In the
database.

A number of rules cover the implementation of an
entity class.

Persistence API-Entity Relationships

Relationships are the same as relationships between
tables in a database:
- One-To-One:

- Each instance of the entity (row) is related to single instance of
another entity (to a single row of another table).

- One-To-Many:
- An entity instance can be related to more than one instance of

another entity. But an instance of the other Entity can only relate to
one instance of the first.

Persistence API-Entity Relationships

- Many-To-One:
Multiple instances (rows) of an Entity can be related to one instance
of another Entity. But an instance of the other Entity can relate to
only one instance of the first Entity.
- Many-To-Many:
- An instance of one Entity relates to many instances of another Entity
and vice versa.

For every relationship there is an owning side and inverse

side.
- The relationship can be unidirectional —it has only an owning side.

- Or, bidirectional — it ha s both an owning side and an inverse side.

—xample Relationships

Owner

Authors

Inverse

Many To Many
bidirectional

Inverse
Inverse

One-To-Many
Bidirectional

Publishers

Owner

One-To-Many
Bidirectional

15

The class EntityManager

—ntityManager Is the most important class of J
- Full name javax.persistence.EntityManager

Some methods of EntityManager
- T find(primaryKey)
- Query createQuery(String jpql)

-+ Creates a JPQL query

- Query createNativeQuery(String sql)
- Creates a SQL query

Some methods of Query
- List getResultList()

- Executes a Query and returns a list of objects

PA

Java Persistence Query Language (JPQL)

+ Very much like ordinary SQL - But not specific to any
DBMS

- JPA converts JPQL to ordinary SQL for the actual DBMS

Introduction to JPA

—ntity Lifecycle

Entity Objects are

carefully managed by

JPA Implementations

This involves support
for transactions,
commit, rollback and
various operations
required by a resilient
enterprise
applications

refresh

commitrollback/close

New/Transient

rollbac

persist

commit
K* new
persist/rollback”
-t
Managed

Removed

merge

rollback

| * = Extended persistence context |

Play simplifies and encapsulates JPA

Play & JPA

Play will automatically start the Hibernate
entity manager when it finds one or more
classes annotated with the
@javax.persistence.Entity annotation.

When the JPA entity manager Is started
you can get it from the application code,

using the JPA helper.

public static index()

{
Query query = JPA.em().createQuery("select * from Article");
List<Article> articles = query.getResultlList();
render(articles);

¥

https://www.playframework.com/documentation/1.2.7/jpa

Transaction management

- Play will automatically manage transactions.

It will start a transaction for each HT TP request and
commit it when the HT TP response is sent. If your code
throws an exception, the transaction will automatically
rollback.

If you need to force transaction rollback from the
application code, you can use the JPA.setRolllbackOnly()
method, which tells JPA not to commit the current
transaction.

The play.db.jpa.Model support class

+ This Is the main helper

@Entity
class for JPA. If yOUlmake public class Post extends Model
one of your JPA entities {
extend the Model class, it public String title;

public String content;

will give you a lot of helper oublic Date postDate:

methods to simplify the JPA
9CCESS. @ManyToOne

public Author author;

- The Model class @neToMany

automatically provides an public List<Comment> comments;
autogenerated Long id field. 5

FInding objects

+ Find by D Post aPost = Post.findById(5L);
. Find all List<Post> posts = Post.findAl1l(Q);
List<Post> posts = Post.all().fetch();
+ Find using a // 100 max posts
S|mpllf|ed List<Post> posts = Post.all().fetch(100);
// 100 max posts start at 50
query List<Post> posts = Post.all().from(50).fetch(100);

Post.find("byTitle", "My first post").fetch();
Post.find("byTitleLike", "%hello%").fetch();
Post.find("byAuthorIsNull").fetch();
Post.find("byTitleLikeAndAuthor"”, "%hello%", connectedUser).fetch();

- LessThan - less than the given value
- LessThanEquals - less than or equal a give

Simplified Queries value
- GreaterThan - greater than a given value
. Slmple queries fO”OW the - GreaterThanEquals - greater than or equal

a given value

syntax [PrOperty] - Like - Equivalent to a SQL like expression,

[Comparator]And? except that the property will always
convert to lower case.

- llike - Similar to a Like, except case
Insensitive, meaning that your argument
will convert to lower case too.

- Elike - Equivalent to a SQL like expression,
no conversion,

- NotEqual - Negates equality

- Between - Between two values (requires two
arguments)

- IsNotNull - Not a null value (doesn’t require
an argument)

- IsNull - Is a null value (doesn’t require an
argument)

=xplicit Save

- All the persistent objects extending the Model class will
not be saved without an explicit call to the save() method.

- This differs from default Hibernate implementations,
which implicitly manage the object lifecycle,
synchronising with transactions support

-+ The Play model is simpler to grasp, but can lead to some
complexities when editing / changing objects in
relationships

=xplore JPA via JUnit Testing

-+ The most direct way of learning JPA - or any persistence technology - is
to write simple unit tests.

-+ These tests should explore all aspects of the potential relationships,
particularly:

- Create
- Read

- Update
- Delate

- Rely on the unit tests to vyield verify APl sequence calls.

JPA Model Project

Start by creating a brand new Play project. Do this by determining the parent folder (most
likely your workspace) and running a command prompt. Then type:

play new jpamodel

Once this has completed, change into the folder just created (jpamodel) and run the
eclipsify command:

cd jpamodel
play eclipsify

You can now import the project into eclipse in the usual way.

20

M‘J
Vi

jpamodel
v i #app

» IH controllers

> i models

P> (= views
v (Htest

> ﬂ} (default package)
=] Application.test.htm|
data.yml
b J_ﬁcrud
» =, JRE System Library [Java SE 7 (MacOS
» =) Referenced Libraries
¥ = conf

> [@crud
| application.conf
dependencies.yml|
messages
routes

= eclipse

» (= public

IS (i)

iy @; IS)

21

Club Class

package models;

import javax.persistence.Entity;
import play.db.jpa.Model;

@Entity
public class Club extends Model

{

public String name;

public Club(String name)
{

this.name = name;

22

Player Class

package models;

import javax.persistence.Entity;
import play.db.jpa.Model;

@Entity
public class Player extends Model

{

public String name;

public Player(String name)
{

this.name = name;

23

import org.junit.*;

ClubTest import java.util.*;

import play.test.*;

import models.*;

public class ClubTest extends UnitTest

{
@Before

public void setup()

{
}

@After
public void teardown()

{
}

@Test
public void testCreate()

{

import org.junit.*;

:)léiS/EarTTEBESt import java.util.¥*;

import play.test.*;

import models.*;

public class PlayerTest extends UnitTest

{
@Before

public void setup()

{
}

@After
public void teardown()

{
}

@Test
public void testCreate()

{

Run the app now in ‘test’ mode:

play test

...and navigate to the test runner page:

e http://localhost:9000/@tests
Select the Club and Player tests - and they should be green.
Also try the database interface:

e http://localhost:9000/€db

26

0| §

|] jdbc:h2:mem:play
= £ club
g id
g name
|2, Indexes
= £ player
g id
g name
|2, Indexes
() information_schema
$2: Sequences
{# Users
(i) H2 1.3.166 (2012-04-08)

o Auto commit “g 7 | Maxrows: [1000 :| D | £

Auto complete | Normal * | (2)

Run (Ctri+Enter) | Clear SQL statement:

Important Commands

(?) |Displays this Help Page
. |Shows the Command History
(2 Executes the current SQL statement

I~ | Disconnects from the database

Sample SQL Script

Delete the table ifitexists | DROP TABLE IF EXISTS TEST,

Create a new table CREATE TABLE TEST(ID INT PRIMARY KEY,
with ID and NAME columns| NAME VARCHAR(255)),

Add a new row INSERT INTO TEST VALUES(1, 'Hello");

Add another row INSERT INTO TEST VALUES(2, "World");
Query the table 'SELECT * FROM TEST ORDER BY ID;
Change data in a row UPDATE TEST SET NAME="Hi' WHERE ID=1,
Remove a row DELETE FROM TEST WHERE ID=2;

Help 'HELP ...

Adding Database Drivers

27

public class PlayerTest extends UnitTest

{
private Player pl, p2, p3;

Player [est

@Before

public void setup()

{
pl = new Player("mike");
p2 = new Player("jim");
p3 = new Player("frank");
pl.save();
p2.save();
p3.save();

@After

public void teardown()

{
pl.delete();
p2.delete();
p3.delete();

@Test
public void testCreate()

{
}

0| &

|] jdbcth2:mem:play
= £l club
g id
g name
|2, Indexes
= 2 player
g id
g name
|2, Indexes
() information_schema
#2: Sequences
{§? Users
(i) H2 1.3.166 (2012-04-08)

o Auto commit p “p | Maxrows: | 1000 :| 3 | “'” | Auto complete | Normal * | (2)

Run (Ctri+Enter) | Clear SQL statement:

SELECT * FROM CLUB

SELECT * FROM CLUB;
ID NAME
(no rows, 25 ms)

Edit

29

toString + //@After

public class Player extends Model

{

public String name;

@ManyToOne
public Club club;

public Player(String name)
{

this.name = name;

}

public String toString()
{

return name;

¥

¥

 We can use Admin

Interface while
project is in ‘test’
mode

Enables us to
understand model
as we evolve
classes and their
relationships

public class PlayerTest extends UnitTest

private Player pl, p2, p3;

@Before

public void setup()

{
pl = new Player("mike");
p2 = new Player("jim");
p3 = new Player("frank");
pl.save(Q);
p2.save();
p3.save();

}

//@After

pUDTLC VOLd Teardownc)
{
pl.delete();
p2.delete();
p3.delete();

}

@Test

public void testCreate()

{
Player a = Player.findByName("mike");
assertNotNull(a);
assertEquals("mike", a.name);
Player b = Player.findByName("jim");
assertNotNull(b);
assertEquals("jim", b.name);
Player c = Player.findByName("frank");
assertNotNull(c);
assertEquals("frank", c.name);

30

3 | & | @ Auto commit “g ‘g | Maxrows: [1000 :| @

(] jdbc:h2:mem:play
= El club
g id
g name
|2, Indexes
= [player
g id
g name
|2, Indexes
() information_schema
s2: Sequences
{§} Users
(i) H2 1.3.166 (2012-04-08)

&

Run (Ctrl+Enter) ' Clear SQL statement:

Auto complete | Normal | (2)

SELECT * FROM CLUB

SELECT * FROM CLUB;

ID 'NAME
1 [tramore
2 dunmore
3 fenor

4 |tramore
5 dunmore
6

fenor
(6 rows, 3 ms)

Edit

private Player pl, p2, p3;

public void setup()

{
pl = new Player("mike");
pZ2 = new Player("jim");
p3 = new Player("frank");
pl.save();
p2.save();
p3.save();

sSome

Player lests

{

}

{

}

@Test
public void testCreate()

Player a = Player.findByName("mike");
assertNotNull(a);

assertEquals("mike", a.name);

Player b = Player.findByName("jim");
assertNotNull(b);

assertEquals("jim", b.name);

Player ¢ = Player.findByName("frank™);
assertNotNull(c);
assertEquals("frank", c.name);

@Test
public void testNotThere()

Player a = Player.findByName("george™);
assertNull(a);

32

ClubTest

public class ClubTest extends UnitTest

{
private Club cl1, c2, c3;
@Before
public void setup()
{

cl = new Club("tramore");
c2 = new Club("dunmore");
c3 = new Club("fenor™);
cl.save(Q);

c2.save();

c3.save();

}

@After

public void teardown()

{
cl.delete();
c2.delete();
c3.delete();

}

}

@Test

public void testCreate()

{
Club a = Club.findByName("tramore");
assertNotNull(a);
assertkEquals("tramore", a.name);
Club b = Club.findByName("dunmore");
assertNotNull(b);
assertEquals("dunmore”, b.name);
Club ¢ = Club.findByName("fenor");
assertNotNull(c);
assertkEquals("fenor", c.name);

}

@Test

public void testNotThere()

{
Club a = Club.findByName("bunmahon™);
assertNull(a);

}

33

Multiplicity & Navigation

players
Club X 5 —>| Player

 Club has a collection of zero or more players

- Players are unaware of Club

Implementation

Relationst

public class Club extends Model

{

}

public String name;

@0neToMany(cascade=CascadeType.ALL)
public List<Player> players;

public Club(String name)
{

this.name = name;
this.players = new ArraylList<Player>();

¥

public String toString()
{

return name;

¥

public void addPlayer(Player player)

{
players.add(player);

}

p In Java Classes

public class Player extends Model

{

public String name;

public Player(String name)
{

this.name = name;

}

public String toString()
{

return name;

h

¥

35

Testing the Player / Club

« Use the fixture to set up
some club / relationships

Relationship

@Before

public void setup()

{
pl = new Player("mike");
p2 = new Player("jim");
p3 = new Player("frank™);
cl = new Club("tramore");
c2 = new Club("dunmore™);
c3 = new Club("fenor™);

cl.addPlayer(pl);
cl.addPlayer(p2);

cl.save();
c2.save();
c3.save();

36

testPlayers

* |n the test, see if
these relationship
have been
established

@Test
public void testPlayers()

{

Club tramore = Club.findByName("tramore");
assertEquals (2, tramore.players.size());

Player mike = Player.findByName("mike");
Player jim = Player.findByName("jim");
Player frank = Player.findByName("framk™);

assertTrue (tramore.players.contains(mike));
assertTrue (tramore.players.contains(jim));
assertFalse (tramore.players.contains(frank));

37

testRemovellayers

* Removing relationships
must also be tested

@Test
public void testRemovePlayer()

{
Club tramore = Club.findByName("tramore");

assertEquals(2, tramore.players.size());

Player mike = Player.findByName("mike");
assertTrue(tramore.players.contains(mike));
tramore.players.remove(mike);
tramore.save();

Club ¢ = Club.findByName("tramore™);
assertEquals(l, c.players.size());

mike.delete();

38

—Xplore the Relationship in the

Database

public void setup()

@Before

{
pl = new
p2 = new
p3 = new
cl = new
CZ2 = hew
c3 = new

Player("mike");
Player("jim");
Player("frank™);

Club("tramore");
Club("dunmore™);
Club("fenor");

cl.addPlayer(pl);
cl.addPlayer(p2);

cl.save();
cZ2.save();
c3.save();

SELECT * FROM CLUB;

3| & | & Auto commit “p
(] jdbc:h2:mem:play
= El club
0 id
B name
|2, Indexes
= E club_player
7 club_id
0 players_id
|2, Indexes
= [player
0 id
o name
|2, Indexes
() information_schema
z2s Sequences
{§} Users
(i) H2 1.3.166 (2012-04-08)

./fD 1

ID NAME
tramore
2 |dunmore

3 [fenor
(3 rows, 3 ms)

SELECT * FROM PLAYER;
ID NAME

1 'mike
2 |jim
(2 rows, 2 ms)

Edit

SELECT * FROM CLUB_PLAYER,;
CLUB_ID PLAYERS_ID

1 1
1 2

(2 rows, 4 ms)

Edit

39

Sidirectional Relationship

1 players
Club Player

0.*
club

+ Club has a ‘one to many’ relationship with players

* Player has a ‘many to one’ relationship with club

Bidirectional Relationship in Java Classes

public class Club extends Model

{

}

public String name;
public class Player extends

@0neToMany(mappedBy="club", cascade=CascadeType.ALL) Model

public List<Players> players; {
public String name;
public Club(String name) @ManyToOne
{ public Club club;
this.name = name; . .
this.players = new ArraylList<Player>Q); public Player(String name)
} {
this.name = name;
public String toString() ¥
{
return name; pUbl'LC Stl’"l.l"lg toStr'lng()
} {
return name;
public void addPlayer(Player player) ¥
{ h

player.club = this;
players.add(player);
¥

41

b | & | & Auto commit Sp /g

|] jdbc:h2:mem:play
= E club
o oid
o name
|2, Indexes
= [player
o id
o name
0 club_id
|2, Indexes
() information_schema
+ 2% Sequences
= {§ Users
(i) H2 1.3.166 (2012-04-08)

+ [+

SELECT " FROM CLUB;
ID NAME
1 tramore

2 dunmore

3 [fenor
(3 rows, 3 ms)

Edit

SELECT * FROM PLAYER;

'ID NAME [CLUB_ID
1 'mke |1

2 ljim 1
(2 rows, 2 ms)

42

Waterford Institute of Technology

.o INSTITIOID TECNEOLAIOCHTA PHORT LAIRGE

OIS

Except where otherwise noted, this content is
licensed under a Creative Commons
Attribution-NonCommercial 3.0 License.

For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

0

elLearning
support unit

