
Produced
by

Department of Computing, Maths & Physics

Waterford Institute of Technology
http://www.wit.ie

http://elearning.wit.ie

Mobile Application Development

Eamonn de Leastar (edeleastar@wit.ie)

mailto:edleastar@wit.ie

Android <-> Play (2) - Concurrency

donation-android project v3

• activities

• display and hander all UI

• main

• retain application wide data
structures (users + donations)

• models

• core information models for the
application

donation-android Project v4
• activities

• display and hander all UI

• main

• retain application wide data structures (users + donations)

• models

• Gateway object for accessing donation-service application

• Local copies of core information models for the application
(download from donation-play)

• Parsers (transformers) for converting objects into format
suitable for upload/download to/from donation-service

• http

• General purpose classes to support asynchronous http
request/response to/from donation-service

HTTP Requests

• A HTTP request is inherently indeterminate and subject to various error conditions:

• The URL may be incorrect

• The Network may be slow or intermittent

• The DNS may be slow

• The service itself may be slow

• The service may crash, or return incorrect or badly formatted results

• For all of these reasons, Android does not permit HTTP requests to be performed
directly in Activities

• In order to connect to a web service for any reason, you must initiate another
‘Thread of Execution’

Concurrency

• Concurrency is the ability to run several programs or
several parts of a program in parallel.

• If a time consuming task can be performed
asynchronously or in parallel, this improves the
throughput and the interactivity of the program.

• A modern computer has several CPU's or several cores
within one CPU. The ability to leverage these multi-cores
can be the key for a successful high-volume application.

Process & Threads

• A process runs independently and isolated of other processes.

• It cannot directly access shared data in other processes.

• The resources of the process, e.g. memory and CPU time, are allocated
to it via the operating system.

• A thread is a lightweight process.

• It has its own call stack, but can access shared data of other threads in
the same process. Every thread has its own memory cache.

• If a thread reads shared data it stores this data in its own memory cache.

• A thread can re-read the shared data.

Java Programs & Threads

• A Java application runs
by default in one
process.

• Within a Java
application you work
with several threads to
achieve parallel
processing or
asynchronous behavior.

Android Processes and Threads

• When an application starts the Android system starts a
new Linux process for the application with a single
thread of execution.

• By default, all components of the same application run in
the same process and thread (called the "main" thread).

• However, you can arrange for different components in
your application to run in separate processes, and you
can create additional threads for any process.

http://developer.android.com/guide/components/processes-and-threads.html

Android Threads

• When an application is launched, the system creates a thread
of execution for the application, called “the main thread."

• This thread is very important because it is in charge of
dispatching events to the appropriate user interface widgets,
including drawing events.

• It is also the thread in which your application interacts with
components from the Android UI toolkit (components from
the android.widget and android.view packages).

• As such, the main thread is also sometimes called the “UI
thread”.

Main (UI) Threads

• The system does not create a separate thread for each
instance of a component.

• All components that run in the same process are
instantiated in the UI thread, and system calls to each
component are dispatched from that thread.

• Consequently, methods that respond to system callbacks
(such as onKeyDown() to report user actions or a lifecycle
callback method) always run in the UI thread of the
process.

Blocking the Main Thread

• If everything is happening in the UI thread, performing long
operations such as network access or database queries will
block the whole UI.

• When the thread is blocked, no events can be dispatched,
including drawing events.

• From the user's perspective, the application appears to hang.

• If the UI thread is blocked for more than a few seconds (about
5 seconds currently) the user is presented with the infamous
"application not responding" (ANR) dialog.

Android AsyncTask Class

• AsyncTask allows you to perform asynchronous work on your
user interface.

• It performs the blocking operations in a worker thread and
then publishes the results on the UI thread.

• You subclass AsyncTask and implement the doInBackground()
callback method, which runs in a pool of background threads.

• To update your UI, you implement onPostExecute(), which
delivers the result from doInBackground() and runs in the UI
thread, so you can safely update your UI..

donation-android Project v4

• http

• General purpose classes to support
asynchronous http request/
response to/from donation-service

• These requests are performed in a
separate thread of execution

Except where otherwise noted, this content is
licensed under a Creative Commons
Attribution-NonCommercial 3.0 License.

For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

Some of this material is adapted from
 http://www.vogella.com/articles/JavaConcurrency/article.html
An excellent source for well structured tutorials and explanations of all
thing related ot Java, Eclipse and Android development

http://www.vogella.com/articles/JavaConcurrency/article.html

