
Produced
by

Department of Computing, Maths & Physics

Waterford Institute of Technology
http://www.wit.ie

http://elearning.wit.ie

Higher Diploma in Science in Computer Science

Mobile Application Development

Eamonn de Leastar (edeleastar@wit.ie)

mailto:edleastar@wit.ie

Services & BroadcastReceivers

Application Context
• Services

• IntentServices

• System Services

• Alarms

• Broadcast Receivers

• BootReceivers

Services
• Services are among the

main building blocks in
Android.

• Unlike an activity, a service
doesn’t have a user
interface; it is simply a piece
of code that runs in the
background of your
application.

• Services are used for
processes that should run
independently of activities,
which may come and go.

Service Lifecycle

• Just like an activity,
a service has a
well-defined life
cycle

• Create the Java class representing the service.

• Register the service in the AndroidManifest.xml file.

• Start the service

• onBind() is used in bound services to
return the actual implementation of
something called a binder. Bound
services can provide more specific APIs
to other applications via an interface

• onCreate() is called when the service is
initially created. It is not called for
subsequent startService() calls

• onStartCommand() is called each time
the service receives a startService()
intent. A service that is already started
could get multiple requests to start again,
and each will cause onStartCommand()
to execute. START_STICKY is used as a
flag to indicate this service is started and
stopped explicitly

• onDestroy() is called just before the
service is destroyed by the stopService()
request.

package app.services;

import android.app.Service;
import android.content.Intent;
import android.os.IBinder;
import android.util.Log;

public class BackgroundService extends Service
{
 static final String TAG = "RefreshService";

 @Override
 public IBinder onBind(Intent intent)
 {
 return null;
 }

 @Override
 public void onCreate()
 {
 super.onCreate();
 Log.d(TAG, "onCreated");
 }

 @Override
 public int onStartCommand(Intent intent, int flags, int startId)
 {
 super.onStartCommand(intent, flags, startId);
 Log.d(TAG, "onStarted");
 return START_STICKY;
 }

 @Override
 public void onDestroy()
 {
 super.onDestroy(); Log.d(TAG, "onDestroyed");
 }
}

Intent Services

• The IntentService class provides a straightforward
structure for running an operation on a single
background thread.

• This allows it to handle long-running operations
without affecting your user interface's
responsiveness.

• Also, an IntentService isn't affected by most user
interface lifecycle events, so it continues to run in
circumstances that would shut down an AsyncTask

IntentService Class

• Standard Services run on the main thread of the
application, i.e., the UI thread.

• This implies that the service is unsuitable for making
network calls.

• An intent service is similar to regular service, with two
main exceptions: whatever work is to be done in
onHandleIntent() will execute on a separate worker
thread, and once it’s done, the service will stop.

Limitations

• It can't interact directly with your user interface. To put its
results in the UI, you have to send them to an Activity.

• Work requests run sequentially. If an operation is running
in an IntentService, and you send it another request, the
request waits until the first operation is finished.

• An operation running on an IntentService can't be
interrupted.

• However, in most cases an IntentService is the preferred
way to simple background operations.

Creating an IntentService

• To create an IntentService define a class that extends
IntentService, and within it, define a method that overrides
onHandleIntent().

Define the IntentService in the Manifest
• An IntentService

also needs an entry
in your application
manifest.

• Provide this entry as
a <service> element
that's a child of the
<application>
element:

• The attribute android:name
specifies the class name of the
IntentService.

Creating an IntentService Request

• To create a work request and send it to an IntentService,
create an explicit Intent, add work request data to it, and
send it to IntentService by calling startService().

Starting the IntentSerivce

• Notice that you can send the work request from
anywhere in an Activity or Fragment. For example, if you
need to get user input first, you can send the request
from a callback that responds to a button click or similar
gesture.

• Once you call startService(), the IntentService does the
work defined in its onHandleIntent() method, and then
stops itself.

Broadcast Receivers
• Broadcast receivers are

Android’s
implementation of a
system-wide publish/
subscribe mechanism.

• The receiver is dormant
code that gets activated
by the occurrence of an
event to which the
receiver is subscribed.
The “event” takes the
form of an intent.

Broadcast Receivers

• The system itself broadcasts events all the time. For
example

• when an SMS arrives

• a call comes in

• the battery runs low

• the system completes booting up

• All those events are broadcast, and any number of
receivers could be triggered by them.

Boot Receiver

• A broadcast
receiver that the
system will
launch when the
boot is complete

• Must be
registered in the
Manifest

package app.services;

import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.util.Log;

public class BootReceiver extends BroadcastReceiver
{
 @Override
 public void onReceive(Context context, Intent intent)
 {
 Log.d("BootReceiver", "onReceived");
 }
}

<receiver android:name=".BootReceiver">

 <intent-filter>

 <action android:name="android.intent.action.BOOT_COMPLETED" />

 </intent-filter>

</receiver>

Broadcasting Intents

• We can broadcast an intent from anywhere in our
application

• If any components - Activities for instance - are interested
in the event/intent - they can register to receive the event.

• This is carried out via a ‘LocalBroadCastManager’ object

Report Status From an IntentService

• To send the status of a
work request in an
IntentService to other
components, first
create an Intent that
contains the status in
its extended data

• The send the Intent by
calling
LocalBroadcastManag
er.sendBroadcast().

• This sends the Intent
to any component
registered to receive it.

Receive Status Broadcasts from an IntentService

• To receive
broadcast Intent
objects, use a
subclass of
BroadcastReceiv
er.

• In the subclass,
implement the
BroadcastReceiv
er.onReceive()
callback method,
which
LocalBroadcast
Manager invokes
when it receives
an Intent..

Systems Services

• It is a System services - an
always-on-always-running
processes.

• There are around 60+ of
these services, such as

• The Service API is well
documented for each
service.

• What is common for all of
them is that they are readily
available to your app via the
context

• Alarm

• Audio

• Camera,

• Media

• Location

• Sensors

• Telephony

• USB

• WiFi,

Scheduling Repeating Alarms

• Alarms (based on the AlarmManager class) give you a
way to perform time-based operations outside the
lifetime of your application.

• E.g use an alarm to initiate a long-running operation,
such as starting a service once a day to download a
weather forecast.

Alarm Characteristics

• They let you fire Intents at set times and/or intervals.

• You can use them in conjunction with broadcast
receivers to start services and perform other operations.

• They operate outside of your application, so you can use
them to trigger events or actions even when your app is
not running, and even if the device itself is asleep

The Alarm Service - Example
public class BootReceiver extends BroadcastReceiver
{
 public static int REQUESTCODE = -1;
 private static final long DEFAULT_INTERVAL = AlarmManager.INTERVAL_FIFTEEN_MINUTES;

 @Override
 public void onReceive(Context context, Intent intent)
 {
 SharedPreferences prefs = PreferenceManager.getDefaultSharedPreferences(context);
 long interval = DEFAULT_INTERVAL;

 PendingIntent operation = PendingIntent.getService(context,
 REQUESTCODE,
 new Intent(context, RefreshService.class),
 PendingIntent.FLAG_UPDATE_CURRENT);

 AlarmManager alarmManager = (AlarmManager) context.getSystemService(Context.ALARM_SERVICE);

 alarmManager.setInexactRepeating(AlarmManager.RTC, System.currentTimeMillis(), interval, operation);
 }
}

• A “PendingIntent”, as created above, is the intent to be
generated by the AlarmService at the requested interval

• The intent ‘RefreshService’ will be sent to the host
application

RefreshReceiver

• When we get the
intent, fetch the
latest donations
from the donation
service

• Broadcast the
receipt of those
donations to
interested parties

public class RefreshService extends IntentService
{
 DonationApp app;

 public RefreshService()
 {
 super("RefreshService");
 }

 @Override
 public void onCreate()
 {
 super.onCreate();
 LogHelpers.info(this, "onCreated");
 app = (DonationApp)getApplication();
 }

 @Override
 protected void onHandleIntent(Intent intent)
 {
 try
 {
 String response = Rest.get("/api/users/" + app.currentUser.id + "/donations");
 List<Donation> donationList = JsonParsers.json2Donations(response);
 app.donations = donationList;
 LogHelpers.info(this, "Donation list received");
 broadcastIntent();
 }
 catch(Exception e)
 {
 LogHelpers.info(this, "failed to retrieve donations : " + e.getMessage());
 }
 }
 private void broadcastIntent()
 {

 Intent localIntent = new Intent(Report.BROADCAST_ACTION);
 LocalBroadcastManager.getInstance(this).sendBroadcast(localIntent);
 }
 //…
}

BroadCastReceiver

• Register to
receive the
Broadcast

• When this
is
received,
update the
list of
donations

public class Report extends Activity
{
 public static final String BROADCAST_ACTION = “app.activities.Report";
 //…

 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 //…
 intentFilter = new IntentFilter(BROADCAST_ACTION);
 ResponseReceiver mResponseReceiver = new ResponseReceiver();
 LocalBroadcastManager.getInstance(this).registerReceiver(mResponseReceiver, intentFilter);
 }

 private class ResponseReceiver extends BroadcastReceiver
 {
 private void ResponseReceiver()
 {
 }

 @Override
 public void onReceive(Context context, Intent intent)
 {
 adapter.donations = app.donations;
 adapter.notifyDataSetChanged();
 }
 }
 }

//…

Application Context
• Services

• IntentServices

• System Services

• Alarms

• Broadcast Receivers

• BootReceivers

Application Components

Except where otherwise noted, this content is
licensed under a Creative Commons
Attribution-NonCommercial 3.0 License.

For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

