
Produced
by

Department of Computing, Maths & Physics

Waterford Institute of Technology
http://www.wit.ie

http://elearning.wit.ie

App Development & Modelling

Eamonn de Leastar (edeleastar@wit.ie)

mailto:edleastar@wit.ie

Repositories - Part 1

Repositories Lab 10 Step Programme!

1. Install Git, Sourcetree & Egit

2. Create Schema Project

3. Commit Baseline Schema project to git repository

4. Create 'Walking Skeleton' Version

5. Commit "Walking Skeleton" Version

6. Commit Simple Player & Club Tests

7. Commit Club/Player One to Many Relationship

8. Manipulating Repository using Sourcetree & Bitbucket

9. Commit Bidirectional Player/Club

10. Checkout Earlier Revision

3

Part 1

4

1. Install Git, Sourcetree & Egit

2. Create Schema Project

3. Commit Baseline Schema project to git repository

4. Create 'Walking Skeleton' Version

5. Commit "Walking Skeleton" Version

The Need for Repositories

• What, precisely, is in a Play project?

5

Play Project =
collection of files in
a folder

• Eclipse ‘Package
Explorer’ view
provides a ‘logical’
listing

• Eclipse ‘Navigator’
view provides
‘physical’ listing

6

Where do you store these files?	

• In a folder, on hard disk (default)

+

• In another folder, on memory stick (backup)

• In dropbox (easy sharing)

• Is this enough?

7

What, exactly, is stored in these folders?

• The latest version of the application you have been working on.

• What about earlier versions?

• The last version that was working correctly

• The version that you used as the starting point for the current feature you
may be working in

• The version you submitted as an assignment solution

• The version currently deployed to cloudbees

8

Versions

• Not only is it important to have the files in your project stored securely
somewhere...

• ... you also need to consider the various version of the files over time

• ... and be able to recover earlier versions.

• Additionally, you may like to have different ‘branches’ over time, which may
represent versions of your applications targeted at different customers,
platforms etc...

9

Tools

• Git - the core “version control” system

• Sourcetree - a visual client for git

• Egit - an eclipse plugin for git

• Bitbucket - a cloud service for hosting git repositories

10

Git

11

12

13

14

Repositories Lab - Step 1

• Install git

• Install SourceTree

• Install Egit

• Create a free account on bitbucket.com

15

Step 2

• Create a new Play Project called “Schema”

16

Step 3 -
• Configure the project to ‘exclude’ generated files

• We do not want the repository to contain ‘generated’
files.

• i.e. Files we did not author and do not need to maintain

• These can be:

• play generated (cloudbees etc...)

• Build generated (bin, test etc..

• Eclipse generated (.settings etc...)

17

Step 3

• A single file called ‘.gitignore’
contains patterns describing all of
these files.

• Place this file in the root of the
“repo”

• Any file in the repo that matches
these patterns will be ignored by git

18

Step 3 - Create a
repository

19

Step 3 - Create a repository

• Workspace is now ‘decorated’ with various
icons.

• ‘?’ indicates the following:

• the file is a candidate for version control (it
will not be ‘.gitignored’)

but

• the file is not currently under control

20

Step 3 - Commit

• Right click on project, and
select ‘Share->Commit’

• Presents presents list of
files (only the files which
had ‘?’ on them already).

• User enters a “Commit
Message”

21

Icons change

Files under revision control now
have another icon indicating they

are ‘controlled’

There are a few other icons we
will see shortly to reflect different

status

22

Commit

Step 4 - Walking Skeleton

• Introduce standalone Player +
Club classes

• Introduce Empty Tests

• Run the app, and also explore
the model in db browser

• (This is a repeat of lab 02)

23

Step 5: Before Commit

• ‘?’ for new files (not yet
committed)

• ‘>’ for files already
committed, but which have
modifications not yet
committed

24

Step 5: Commit

• Commit dialog:

• list of files (new
or modified) to
be committed

• a commit
message, which
should
summarize

25

• Changes made but
NOT committed

26

• Changes committed

Step 5: After Commit

Step 5: Repository History

27

Except where otherwise noted, this content is
licensed under a Creative Commons
Attribution-NonCommercial 3.0 License.

For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

