
Produced
by

Department of Computing, Maths & Physics

Waterford Institute of Technology
http://www.wit.ie

http://elearning.wit.ie

BSc in Applied Computing

App Development & Modelling

Eamonn de Leastar (edeleastar@wit.ie)

mailto:edleastar@wit.ie

Modeling Relationships

Associations

• In Visual Paradigm, on the palette on the left, select the 'association' element
and use it to connect Club and Player.

3

Association Attributes

• Select the association
(the line), and locate the
following panel:

4

Multiplicity & Navigation

• Club has a collection of zero or more players

• Players are unaware of Club

5

6

Implementation Relationship in Java Classes

7

public class Club extends Model
{
 public String name;

 @OneToMany(cascade=CascadeType.ALL)
 public List<Player> players;

 public Club(String name)
 {
 this.name = name;
 this.players = new ArrayList<Player>();
 }

 public String toString()
 {
 return name;
 }

 public void addPlayer(Player player)
 {
 players.add(player);
 }
}

public class Player extends Model
{
 public String name;

 public Player(String name)
 {
 this.name = name;
 }

 public String toString()
 {
 return name;
 }
}

Testing the Player / Club Relationship

• Use the fixture to set up
some club / relationships

8

 @Before
 public void setup()
 {
 p1 = new Player("mike");
 p2 = new Player("jim");
 p3 = new Player("frank");

 c1 = new Club("tramore");
 c2 = new Club("dunmore");
 c3 = new Club("fenor");

 c1.addPlayer(p1);
 c1.addPlayer(p2);

 c1.save();
 c2.save();
 c3.save();
 }

testPlayers

• In the test, see if
these relationship
have been
established

9

 @Test
 public void testPlayers()
 {
 Club tramore = Club.findByName("tramore");

 assertEquals (2, tramore.players.size());

 Player mike = Player.findByName("mike");
 Player jim = Player.findByName("jim");
 Player frank = Player.findByName("framk");

 assertTrue (tramore.players.contains(mike));
 assertTrue (tramore.players.contains(jim));
 assertFalse (tramore.players.contains(frank));
 }

testRemovePlayers

• Removing relationships
must also be tested

10

 @Test
 public void testRemovePlayer()
 {
 Club tramore = Club.findByName("tramore");
 assertEquals(2, tramore.players.size());

 Player mike = Player.findByName("mike");
 assertTrue(tramore.players.contains(mike));
 tramore.players.remove(mike);
 tramore.save();

 Club c = Club.findByName("tramore");
 assertEquals(1, c.players.size());

 mike.delete();
 }

Bidirectional Relationship

• Club has a ‘one to many’ relationship with players

• Player has a ‘many to one’ relationship with club

11

Bidirectional Relationship

12

Bidirectional Relationship in Java Classes

13

public class Player extends
Model
{
 public String name;

 @ManyToOne
 public Club club;

 public Player(String name)
 {
 this.name = name;
 }

 public String toString()
 {
 return name;
 }
}

public class Club extends Model
{
 public String name;

 @OneToMany(mappedBy="club", cascade=CascadeType.ALL)
 public List<Player> players;

 public Club(String name)
 {
 this.name = name;
 this.players = new ArrayList<Player>();
 }

 public String toString()
 {
 return name;
 }

 public void addPlayer(Player player)
 {
 player.club = this;
 players.add(player);
 }
}

Unidirectional Relationship in Java Classes

14

public class Club extends Model
{
 public String name;

 @OneToMany(cascade=CascadeType.ALL)
 public List<Player> players;

 public Club(String name)
 {
 this.name = name;
 this.players = new ArrayList<Player>();
 }

 public String toString()
 {
 return name;
 }

 public void addPlayer(Player player)
 {
 players.add(player);
 }
}

public class Player extends Model
{
 public String name;

 public Player(String name)
 {
 this.name = name;
 }

 public String toString()
 {
 return name;
 }
}

Exercise: Model This:

15

Except where otherwise noted, this content is
licensed under a Creative Commons
Attribution-NonCommercial 3.0 License.

For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

