App Development & Modelling

BSc in Applied Computing

Eamonn de Leastar (edeleastar@wit.ie)

Department of Computing, Maths & Physics
Waterford Institute of Technology

http://www.wit.ie

http://elearning.wit.ie

Waterford Institute of Technology 0 elLearning

c»‘\ %/ 5 WSTITICID TECNEOLAIOCHTA PHORT LAIRGE support unit

T —

mailto:edleastar@wit.ie

Modeling Relationships

Assoclations

- In Visual Paradigm, on the palette on the left, select the 'association' element
and use it to connect Club and Player.

il
y

Club Player

Association Attributes

.(E Property;) Diagram .. Lg Documen.. Stencil Qj Teamwor.. |

000

- Select the association
(the line), and locate the
following panel:

Club Player

= 4 | B &

Name
Parent

v Role A
Name

» Club
Multiplicity
Navigable
Visibility

Stereotypes
Tagged Values
Comments

¥ Role B
Name

» Player
Multiplicity
Navigable
Visibility

Stereotypes
Tagged Values
Comments

Visibility
Abstract

Leaf
Stereotypes
Tagged Values
Comments

» Proiect Manaagement

Club-Player - Association

Aggregation Kind

» Project Management

Aggregation Kind

» Project Management

Property

<None>

<Unspecified>
<Unspecified>
<Unspecified>
None

<Unspecified>

<Unspecified>
<Unspecified>
<Unspecified>
None

<Unspecified>

<Unspecified>

<Unspecified>

“a»

> A

Multiplicity & Navigation

players
Club X 5 —>| Player

 Club has a collection of zero or more players

- Players are unaware of Club

players
Club X 5 —>| Player
—
I Role A grRoleg [
Name Name players
» Club » Player
Multiplicity <Unspecified> Multiplicity 0..*
Navigable ~ [False | Navigable True
Visibility <Unspecified> Visibility <Unspecified>
Aggregation Kind None Aggregation Kind None
Stereotypes <Unspecified> Stereotypes <Unspecified>
Tagged Values Tagged Values
____Comments Comments

Implementation

Relationst

public class Club extends Model

{

}

public String name;

@0neToMany(cascade=CascadeType.ALL)
public List<Player> players;

public Club(String name)
{

this.name = name;
this.players = new ArraylList<Player>();

¥

public String toString()
{

return name;

¥

public void addPlayer(Player player)

{
players.add(player);

}

p In Java Classes

public class Player extends Model

{

public String name;

public Player(String name)
{

this.name = name;

}

public String toString()
{

return name;

h

¥

Testing the Player / Club

« Use the fixture to set up
some club / relationships

Relationship

@Before

public void setup()

{
pl = new Player("mike");
p2 = new Player("jim");
p3 = new Player("frank™);
cl = new Club("tramore");
c2 = new Club("dunmore™);
c3 = new Club("fenor™);

cl.addPlayer(pl);
cl.addPlayer(p2);

cl.save();
c2.save();
c3.save();

testPlayers

* |n the test, see if
these relationship
have been
established

@Test
public void testPlayers()

{

Club tramore = Club.findByName("tramore");
assertEquals (2, tramore.players.size());

Player mike = Player.findByName("mike");
Player jim = Player.findByName("jim");
Player frank = Player.findByName("framk™);

assertTrue (tramore.players.contains(mike));
assertTrue (tramore.players.contains(jim));
assertFalse (tramore.players.contains(frank));

testRemovellayers

* Removing relationships
must also be tested

@Test
public void testRemovePlayer()

{
Club tramore = Club.findByName("tramore");

assertEquals(2, tramore.players.size());

Player mike = Player.findByName("mike");
assertTrue(tramore.players.contains(mike));
tramore.players.remove(mike);
tramore.save();

Club ¢ = Club.findByName("tramore™);
assertEquals(l, c.players.size());

mike.delete();

10

Sidirectional Relationship

1 players
Club Player

0.*
club

+ Club has a ‘one to many’ relationship with players

* Player has a ‘many to one’ relationship with club

Sidirectional Relationship

1 players
Club 0~ Player

club

v Role A
Name club
» Club
Multiplicity 1
Navigable True
Visibility <Unspecified>
Aggregation Kind None
Stereotypes <Unspecified>
Tagged Values
Comments

Bidirectional Relationship in Java Classes

public class Club extends Model

{

}

public String name;
public class Player extends

@0neToMany(mappedBy="club", cascade=CascadeType.ALL) Model

public List<Players> players; {
public String name;
public Club(String name) @ManyToOne
{ public Club club;
this.name = name; . .
this.players = new ArraylList<Player>Q); public Player(String name)
} {
this.name = name;
public String toString() ¥
{
return name; pUbl'LC Stl’"l.l"lg toStr'lng()
} {
return name;
public void addPlayer(Player player) ¥
{ h

player.club = this;
players.add(player);
¥

13

Unidirectional Relationship in Java Classes

public class Club extends Model

{

¥

public String name; public class Player extends Model

{
@0neToMany(cascade=CascadeType.ALL) public String name;

public List<Player> players;

public Player(String name)

public Club(String name) {
{ this.name = name;
this.name = name; 1
this.players = new ArraylList<Player>();
+ public String toString()
{
public String toString() return name;
{ by
return name; }
ks
public void addPlayer(Player player)
{
players.add(player);
Iy

14

—xercise: Model This:

Division

members Club 1 players
> club
0..* 0..*

support)

0..* sponsors

Sponsor

Player

15

Waterford Institute of Technology

.o INSTITIOID TECNEOLAIOCHTA PHORT LAIRGE

H©

Except where otherwise noted, this content is
licensed under a Creative Commons
Attribution-NonCommercial 3.0 License.

For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

i

elLearning
support unit

