
Produced
by

Department of Computing, Maths & Physics

Waterford Institute of Technology
http://www.wit.ie

http://elearning.wit.ie

BSc in Applied Computing

App Development & Modeling

Eamonn de Leastar (edeleastar@wit.ie)

mailto:edleastar@wit.ie

Javascript Part 1a

A Web Page with HTML, CSS & Javascript

3

<html>
<head>
 <title>Hello World</title>
 <!-- CSS for presentation -->
 <style type="text/css">
 h1 { font-size: 14px; color: hotpink; }
 button { color: red; }
 </style>
 <!-- JavaScript for interactivity -->
 <script type="text/javascript">
 function buttonClick()
 {
 alert("Hello!");
 }
 </script>
</head>
<body>
 <h1>Hello World</h1>
 <button onClick="buttonClick();">Click Me!</button>
</body>
</html>

Eclipse Project

4

Eclipse Project - Browser

5

Associate html file with Google Chrome

• Change Eclipse Settings to load Chrome instead of build in editor...

6

7

View->Source

8

View->Developer Tools

9

10

11

Source view in Developer Tools

12

Placement
of Script -
top

• If the code will interact with the elements on the page, you have to make
sure those elements exist at the time the script is executed.

• This common pitfall can be seen in the example above.

• The script for finding the element with the ID "hello-world" will be executed
before the element is defined in the document.

13

<!--Attempting to access an element too early will have
unexpected results.-->
<!doctype html>
<html>
<head>
<script type="text/javascript">

 var title = document.getElementById("hello-world");
 console.log(title);

</script>
</head>
<body>
 <h1 id="hello-world">Hello World</h1>
</body>
</html>

14

Placement -
Page end

• It is a common pattern to move scripts to the bottom of the page, prior to the
closing HTML <body> tag. This will guarantee that elements are defined when
the script is executed.

15

<!--Moving the script to the bottom of the page will make
sure the element exists.-->
<!doctype html>
<html>
<head>
</head>
<body>
 <h1 id="hello-world">Hello World</h1>
 <script type="text/javascript">

 var title = document.getElementById("hello-world");
 console.log(title);

 </script>
</body>
</html>

16

Comments

• Similar Rules to Java

17

// Single and multi line comments.
// this is an example of a single line comment.

/*
 * this is an example
 * of a
 * multi line
 * comment.
 */

Whitespace

• Whitespace is also ignored in JavaScript.

• There are many tools that will strip out all the whitespace in a program,
reducing the overall file size and improving network latency.

• Given the availability of tools like these, whitespace should be leveraged to
make the code as readable as possible.

18

// Whitespace is insignificant.
var hello = "Hello";

var world = "World!";

Reserved Words

• Significant overlap with Java

• However, meaning often different in subtle ways

19

Identifiers
• Identifiers are used to give variables and

functions a unique name so they can
subsequently be referred to by that name.

• The name of an identifier must follow a
few rules:

• Cannot be a reserved word.

• Can only be composed of letters,
numbers, dollar signs, and
underscores.

• The first character cannot be a number.

20

// Valid identifier names.
var myAwesomeVariable = "a";
var myAwesomeVariable2 = "b";
var my_awesome_variable = "c";
var $my_AwesomeVariable = "d";
var _my_awesome_variable_$ = "e";

Running a Program

21

<!doctype html>
<html>
<head>
 <script src="js/foo.js"></script>
</head>
 <body>

 <h1 id="hello-world">Hello World</h1>

 <script type="text/javascript">
 foo();
 </script>

 </body>
</html>

var foo = function()
{
 for (var i = 0; i < 10; i++)
 {
 alert(i);
 }
};

Chrome Developer Tools View

• In developer tools - and select "Sources". Press the "Navigator" button (small
button on top left) and locate and display the foo.js file

22

Setting Breakpoints

• In Chrome
Sources
view, click on
margin
alongside
the alert line
- this should
place a
marker as
shown:

23

Viewing Variables

• With the javascript program paused -
because the marker we set down
above is a 'breakpoint'. This means
the programs is waiting your
command to resume.

• Hover on the 5 buttons along the top
for a few seconds each - and read the
tooltip.

• In particular, experiment with the 'step
over..' and 'step into...' buttons.
Monitor the "Scope Variables" panel
while you are doing this:

24

Types

• Types in JavaScript fall into two categories: primitives or objects. Primitive
types include:

• String

• Number

• Boolean

• Null

• Undefined

25

Strings

• Strings are text wrapped in
single or double quotation
marks.

• It is best practice to
consistently use one or the
other.

• There may be times when
the string contains quotation
marks that collide with the
ones used to create the
string.

• In this case, either escape
the characters using a \
backslash or use different
quotes around the string.

26

/ Strings can created with double or single quotes.
var a = "I am a string";
var b = 'So am I!';

alert(a);

alert(b);
// Sometimes a string may contain quotation marks.
var statement1 = 'He said "JavaScript is awesome!"';

var statement2 = "He said \"JavaScript is awesome!\"";

Strings & Objects

27

<!doctype html>
<html>
 <head>
 <script src="js/types.js"></script>
 </head>
 <body>

 <h1 id="Hello Types">Hello World</h1>

 </body>
</html>

var a = "I am a string";
var b = 'So am I!';

alert(a);
alert(b);

var person1 = new Object;

person1.firstName = "John";
person1.lastName = "Doe";

alert(person1.firstName + " " + person1.lastName);

• Opening the "Sources" tab and open the 'types.js' file and set a breakpoint
(by clicking on the margin) on the second line:

28

• Reload the
page again note
that you will be
in 'debug'
mode

29

• Single step through the lines and
observe.

• The "Scope Variables" view is not
much use here. Instead select locate
the 'Watch Expressions' and press
the "+" button:

• enter the name of a variable - 'a' in
this instance - and press return:

• Experiment with the debug buttons -
particularly the 'Step over' and 'Step
into' buttons.

• See if you can monitor the 'person1'
object - you should be able to view
it's contents something like this:

• You can restart the 'program' at any
stage by reloading the page in
Chrome.

30

Numbers

• Number types are any positive or negative numeric value. There is no
distinction between integer and floating point val

31

// Numbers are any whole or floating point integer.
var num1 = 100;
var num2 = 100.10;
var num3 = 0.10;

Boolean

• Boolean types are either true or false

32

// Boolean values.
var okay = true;
var fail = false;

Null and Undefined

• Null and undefined are special types in
JavaScript.

• Null types are a value that represent the
absence of a value.

• Undefined types represent a state in which
no value has been assigned at all.

• This type is created in two ways:

• by using the undefined keyword

• or by not defining a value at all.

33

// Two ways to achieve an undefined
value.
var foo = null;

var bar1 = undefined;
var bar2;

Except where otherwise noted, this content is
licensed under a Creative Commons
Attribution-NonCommercial 3.0 License.

For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

