
Produced
by

Department of Computing, Maths & Physics

Waterford Institute of Technology
http://www.wit.ie

http://elearning.wit.ie

BSc in Applied Computing

App Development & Modelling

Eamonn de Leastar (edeleastar@wit.ie)

mailto:edleastar@wit.ie

Functions & Scope

Creating Functions

• Functions contain blocks of code that
need to be executed repeatedly.

• Functions can take zero or more
arguments, and can optionally return
a value.

• Functions can be created in a variety
of way

3

// Function Declaration
function foo()
{
 /* do something */
}

// Named Function Expression
var foo = function()
{
 /* do something */
}

Using Functions

4

// A simple function
var greet = function(person, greeting)
{
 var text = greeting + ", " + person;
 console.log(text);
};

greet("Rebecca", "Hello");

// A function that returns a value
var greet = function(person, greeting)
{
 var text = greeting + ", " + person;
 return text;
};

console.log(greet("Rebecca", "hello")); // "hello, Rebecca"

Functions creating Functions

• the greet function returns a
function!

• This functions is then
called.

5

// A function that returns another function
var greet = function(person, greeting)
{
 var text = greeting + ", " + person;
 return function()
 {
 console.log(text);
 };
};

var greeting = greet("Rebecca", "Hello");
greeting();

Immediately-Invoked Function Expression (IIFE)

• A common pattern in JavaScript is the
immediately-invoked function
expression.

• This pattern creates a function
expression and then immediately
executes the function.

• This pattern is extremely useful for
cases where you want to avoid
polluting the global namespace with
code — no variables declared inside
of the function are visible outside of it.

6

// An immediately-invoked function expression
(function() {

 var foo = "Hello world";

})();

console.log(foo); // undefined!

Functions as Arguments

• In JavaScript, functions
are "first-class citizens" —
they can be assigned to
variables or passed to
other functions as
arguments.

• Challenging and difficult to
read code!

7

// Passing an anonymous function as an argument
var myFn = function(fn)
{
 var result = fn();
 console.log(result);
};

// logs "hello world"
myFn(function()
{
 return "hello world";
});

Scope

• "Scope" refers to the variables that are available to a piece of code at a given
time.

• A lack of understanding of scope can lead to frustrating debugging
experiences.

• When a variable is declared inside of a function using the var keyword, it is
only available to code inside of that function — code outside of that function
cannot access the variable.

• On the other hand, functions defined inside that function will have access to
to the declared variable.

8

More Scope...

• Furthermore, variables that are declared inside a function without the var
keyword are not local to the function — JavaScript will traverse the scope
chain all the way up to the window scope to find where the variable was
previously defined.

• If the variable wasn't previously defined, it will be defined in the global scope,
which can have unexpected consequences.

9

Scope Example 1

10

// Functions have access to variables defined in the same scope
var foo = "hello";
var sayHello = function()
{
 console.log(foo);
};

sayHello(); // "hello"
console.log(foo); // "hello"

Scope Example 2

11

// Code outside the scope in which a variable was defined does not have access
// to the variable
var sayHello = function()
{
 var foo = "hello";
 console.log(foo);
};

sayHello(); // hello

console.log(foo); // undefined

Scope Example 3

12

// Variables with the same name can exist in different scopes with different
// values
var foo = "world";

var sayHello = function()
{
 var foo = "hello";
 console.log(foo);
};

sayHello(); // logs "hello"
console.log(foo); // logs "world"

Except where otherwise noted, this content is
licensed under a Creative Commons
Attribution-NonCommercial 3.0 License.

For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

