App Development & Modelling

BSc in Applied Computing

Eamonn de Leastar (edeleastar@wit.ie)

Department of Computing, Maths & Physics
Waterford Institute of Technology

http://www.wit.ie

http://elearning.wit.ie

Waterford Institute of Technology 0 elLearning

“;\ 75 INSTINOID TECNEOLAIOCHTA PHORT LARGE SUppOft unit

i i


mailto:edleastar@wit.ie

Introduction to UML



Why develop a UML model?

* Provide structure for problem solving

« Experiment to explore multiple solutions

* Furnish abstractions to manage complexity
- Decrease development costs

« Manage the risk of mistakes



The Challenge




The Vision




Why do we model graphically?

- Graphics reveal data.

- Edward Tufte
The Visual Display of Quantitative Information, 1983

* 1 bitmap = 1 megaword.

* Anonymous visual modeler



Suilding Blocks of UML

* The basic building blocks of UML are:

- model elements (classes, interfaces, components, use cases, etc.)

- relationships (associations, generalization, dependencies, etc.)

- diagrams (class diagrams, use case diagrams, interaction diagrams, etc.)
- Simple building blocks are used to create large, complex structures

* eg elements, bonds and molecules in chemistry

* eg components, connectors and circuit boards in hardware



—xample : Classifier View

Element

C

<<covalent>>

T Carbon

<<covalent>>——

C

H

Hydrogen




—xample: Instance View

:Hydrogen :Hydrogen
:Hydrogen :Carbon :Carbon :Hydrogen

:Hydrogen :Hydrogen




UML Modeling

« Use Case
« Structural
« Behavioural

« Architectural

Process

10



Use Case

J Use Case Modeling Structural Behavioral

Architectural

Use case diagram

You can visualize high level system functions or
requirements by drawing use case diagram, which
contains primarily actors and use cases. Actors are
entities that interact with the system, while use
cases are the system functions actors involve. Note
that you draw use case diagram to tell readers
WHAT the system should do but not how to do.

-:‘M--

Visual Paradigm Help

Inspection Management System (MS)

11



Structural Modeling

Use Case [ Structural Modeling

Class diagram

Class diagram is the most widely used diagram in
modeling object-oriented system. A class diagram is
an important diagram in software development. It
represents the static aspect of system with classes,
interfaces, associations and generalizations.
Package is commonly used model element for
organizing elements in class diagram. Class
diagrams are not just for visualizing and
documenting structure models but also for
constructing executable system with forward,
reverse and round-trip engineering. There is also a
synchronization engine for generating and updating
entity relationship diagram from class diagram.

s e
| A —

[
,_

Behavioral Architectural
RBH ~ om vp. demo | o !
-
X, Took "—1
@ Pt Umm wl
sy » | e b
:""" posy | L ®E ERD
A Gotrre Pen w:: Y -o.
iy 2P mrmecd) ey e

ma- @ Sa

00 [P

o= Ganerdhastion R PE

% o e e

-~ Assooaton D v P.D e s

@ Nowy Amooston

:mo— 1

» Deperdercy

.‘“m vt g etanl sta et controler

@ Colabor stion

0N Mose

B rote

A

), Corety et . ¢

* Cortarmert - ‘“’.’.“ Sehh

‘: ’ ML e L) l::ﬂ.m":-.u'“m“

Ly T . .. .
'—'Eﬁ— = =

Class diagram sample shows classes, associations and

Visual Paradigm Help

generalizations

12



Sehavioural Modeling

7

Use Case Structural Behavioral Modeling Architectural

Sequence diagram

Sequence diagram shows the interaction between
users, systems and sub-systems, and emphasize
the ordering of time of messages. You can draw
sequence diagram solely by mouse or with
keyboard shortcuts.

‘ - T . ‘ [ v ecs e Mesinpe A.'- -
- ] ©» Found Message iising) Pemoon
e |2 wER e raveRO@
e = > [ from [ | (- | Message Tyoe |
.'._‘.,‘_.. el o~ :_:_' i';¢ ) A2, Conbinad Fron £ e . 1 Yot e TN Messnye
— —wi— :’O\; ) Yoo acton Uve T rweorfon - ) adrepactan() Messae
A ) Frame P shetyiwpene.. v 4 e Meving
1 row R e v oachy ragecton dute Messap
Tutorial ) Conoument R yeece .4 Sy eage o ragecton Gate Message
. . @9 Cortrumon £ oo . ? O [Save) Messape
e Draw sequence diagram with keyboard ey T - §gpr g =
e Constructing sequence diagram with —
existing classes Sequence diagram sample with keyboard control panel

o Different ways of numbering sequence

Visual Paradigm Help



Architectural Modeling

Use Case Structural Behavioral [ Architectural Modeling

Component diagram

Component diagram shows the physical aspect of
an object-oriented software system. Component
diagram illustrates the architectures of the software
components and dependencies between them.
That's why it is commonly used in software
development.

4 4
3y |
T . Component diagram sample shows objects and interfaces

User's Guide
e Drawing component diagrams

Visual Paradigm Help

14



Structural Modeling

« Core concepts

« Diagram Types

15



Structural Modeling Core

* a view of an system that emphasizes the structure of the objects, including

—lements

their classifiers, relationships, attributes and operations.

Construct

Description

Syntax

class

a description of a set of objects
that share the same attributes,
operations, methods, relationships
and semantics.

interface

a named set of operations that
characterize the behavior of an
element.

«interface»

component

a modular, replaceable and
significant part of a system that
packages implementation and
exposes a set of interfaces.

node

a run-time physical object that
represents a computational
resource.

16



Structural Modeling: Core

Relationships

Construct

Description

Syntax

association

a relationship between two or more
classifiers that involves connections
among their instances.

aggregation

A special form of association that
specifies a whole-part relationship
between the aggregate (whole) and
the component part.

generalization

a taxonomic relationship between a
more general and a more specific
element.

dependency

a relationship between two modeling
elements, in which a change to one
modeling element (the independent
element) will affect the other modeling
element (the dependent element).

17



Structural Diagram Tour

« Show the static structure of the model
* the entities that exist (e.g., classes, interfaces, components, nodes)
* internal structure
* relationship to other entities
* Do not show
 temporal information
* Kinds
- static structural diagrams
- class diagram
* object diagram
- implementation diagrams
« component diagram

» deployment diagram

18



Static Structural Diagram Examples

- Shows a graph of classifier elements connected by static relationships.
* kinds
- class diagram: classifier view

 object diagram: instance view



Classes

Window

Window
{abstract,
author=Joe,
status=tested}

Window

size: Area
visibility: Boolean

+size: Area = (100,100)
#visibility: Boolean = true
+default-size: Rectangle

#maximum-size: Rectangle
-xptr: XWindow™

display ()
hide ()

+display ()

+hide ()

+create ()
-attachXWindow(xwin:Xwindow™)

20



Classes: Compartments with Names

Reservation

operations

guarantee()
cancel ()
change (newDate: Date)

responsibilities

bill no-shows
match to available rooms

exceptions

invalid credit card

21



Classes: method body

PoliceStation

alert (Alarm)

1 station

BurglarAlarm

isTripped: Boolean = false

{ if isTripped
then station.alert(self)}

22



Types & Implementation Classes

«type»
Object

A* elements

«type»
Set

addElement(Object)
removeElement(Object)
testElement(Object):Boolean

«implementationClass»
HashTable

1 body

¢

«implementationClass»
HashTableSet

addElement(Object)
removeElement(Object)
testElement(Object):Boolean
setTableSize(Integer)

23



Interfaces: Shorthand Notation

POSterminalHome

Oi

07

POSterminal

POSterminal

StoreHome

Store

-storeld: Integer
-POSlist: List

+create()

+login(UserName, Passwd)
+find(Storeld)
+getPOStotals(POSid)
+updateStoreTotals(ld,Sales)
+get(ltem)

24



Interfaces: Longhand Notation

POSterminalHome

POSterminal

07

07

POSterminal

~

StoreHome

N _<<use>>

~N
~
~N
~N

<<interface>>
Store

N

+getPOStotals(POSid)
+updateStoreTotals(ld,Sales)
+get(ltem)

Store

07

-storeld: Integer
-POSlist: List

+create()

+login(UserName, Passwd)
+find(Storeld)
+getPOStotals(POSid)
+updateStoreTotals(ld,Sales)
+get(ltem)

25



Assoclations

%k

< Job 1..%

Company

employer | employee

|
Job
salary

Person

boss

0..1 |
worker| =

<4 Manages

Person

Account

\

Corporation

26



Assoclation Ends

Polygon

11

1

+vertex

Containsy- 3.%

{ordered}

>,

Point

GraphicsBundle

—
-bundle| color

texture
density

27



Composition

scrollbar

Window

scrollbar [2]: Slider

title: Header
body: Panel

Window

1 1

2 title

¢

1

Slider

Header

body

1

Panel

28



Generalization (Inheritance)

Polygon Ellipse Spline
Shape
/\
Polygon Ellipse Spline

Separate Target Style

Shared Target Style

29



Generalization (Inheritance)

— - {overlapping}

Vehicle
N
venue
WindPowered MotorPowered Land
Vehicle Vehicle Vehicle
Truck Sailboat

Water
Vehicle

30



Dependencies

ClassA

«friend»

ClassB

T~

A

«instantiate» |

«call»

ClassC

«refine»

ClassD T

S~

«friendy» ~ ~ .

S~

ClassD

~ < operationZ()

ClassC combines
two logical classes

ClassE

31



Class

Dlagram

<<interface>>
EntityBean

buyer 1

Customer

—Xxample

CreditCard

{abstract}

OrderBean
{abstract}

+getOrderStatus
+setOrderStatus

PMCreditCard

+getLineltems
+setLineltems
order +getCreditApproved
+setCreditApproved

1 order

* item

Lineltem

PMOrder

{abstract}

* item

1 commodity

Product

PMLineltem

32



Some of these slides were adapted from a presentation by Cris Kobryn
Co-Chair UML Revision Task Force
+ the Visual Paradigm Online Help
http://www.visual-paradigm.com/product/vpuml/provides/umimodeling.jsp

© 1999-2001 OMG and Contributors: Crossmeta, EDS, IBM, Enea Data, Hewlett-Packard, IntelliCorp, Kabira Technologies, Klasse Objecten,
Rational Software, Telelogic, Unisys

Waterford Institute of Technology 0 elLearning

(\1\ 77 WNSTIMJID TEHCNEOLAIOCHTA PHORT LARGE Su ppor[ unit
ST


http://www.visual-paradigm.com/product/vpuml/provides/umlmodeling.jsp

