
©2003 Allen I. Holub www.holub.com A Catalog of Design Patterns

 1

Appendix A:
Design-Pattern Quick Reference

This appendix is a reference of the Gang-of-Four design patterns to jog your

memory about how the patterns work. Ironically, the original GoF presentation
was this brief, but they expanded things in the book to make it more accessible.
Once you know the patterns, however, brevity is good. This catalog probably
won’t be of much use if you don’t already have some familiarity with the
patterns, however. A lot of the material you’d find in an intro-level discussion is
either missing or very condensed in the current document.

Though I’ve followed the Gang-of-Four organization (alphabetical by
category), I have deliberately not followed the Gang-of-Four format for the pattern
description itself. In particular, I’ve restated their “intent” section to make it more
understandable. I’ve also used very-stripped-down examples, which are usually
not the same examples that you’ll find in the GoF book. If you want a more-
formal presentation and more elaborate examples, get a copy of the GoF book,
too. My examples are also not the same as the GoF examples. In particular, since
most of us aren’t doing GUI work, I’ve tried to eliminate GUI-related example
code.

I’ve tried to make up for some of this brevity by adding a list of places where
the design patterns are found in the Java packages, so that you can see how they’re
applied in practice. (Some patterns don’t appear in Java, in which case the
“Usage” example will say so. Also, detailed code similar to my stripped-down
examples can be found in one or another of the volumes of Chan, Lee, and
Kramer’s The Java Class Libraries or in the Java documentation or Tutorials
available on the Sun web site.

I’ve played a bit loose with the code in the interest of saving space, leaving
out required import statements, access privileges, exceptions, etc. The formatting
isn’t ideal in places. I’m assuming that you know what you’re doing in the Java-
programming department and are more interested in the clarity of the example
than in having cut-and-paste code. Don’t expect the code to compile cleanly as it
stands.

Finally, I’ve said a few things in these notes which you may find shocking if
you haven’t read the rest of the book or some of my other work—things like
“objects must be responsible for building their own user interfaces.” There’s
simply no room to explain this sort of thing in a quick reference. Sorry. (You may
want to check out the “articles” section of my web site http://www.holub.com, for
illumination.)

This document is a draft excerpt from my book, Applying
Design Patterns in Java, due to be published by Apress as
soon as I get it finished (hopefully by Summer, 2003).
The book is a work in progress, and I’m interested in your
comments. Sign up for my newsletter at
<http://www.holub.com/subscribe.html> to get notified about
updates, etc.

©2003 Allen I. Holub. All rights reserved.

wwww.holub.com

Note: when printing two sided,
this page should be an odd (right-
hand) page number so that each
two-page pattern description will
appear on two facing pages.

Appendix A ©2003 Allen I. Holub www.holub.com

2

[This page intentionally left blank*]

* Rather an odd thing to say, since the page isn’t blank at all—it contains the text “This
page intentionally left blank” —but imagine that it’s blank.

©2003 Allen I. Holub www.holub.com A Catalog of Design Patterns

 3

Creational Patterns

The creational patterns are all concerned with object creation (fancy that!). Most of them provide ways to
create objects without knowing exactly what you’re creating (beyond the interfaces supported by the created
objects). Programming in terms of interfaces rather than concrete-classes is essential if you intend to write
flexible, reusable code. My rule of thumb is that as much as 80% of my code should be written in terms of
interfaces.

Appendix A ©2003 Allen I. Holub www.holub.com

4

Abstract Factory
Create objects knowing only the interfaces they implement (without knowing the actual class). Typically,
create one of a “family” of objects (one of several kinds of Iterators, one of several kinds of graphical widgets,
etc.)..

Abstract Factory: Interface to
the actual factory.
Concrete Factory: Implements
the Abstract Factory interface
to create a specific class of
object.
Abstract Product: The sort of
product that the abstract
factory creates.
Concrete Product: The actual
object (whose class you don’t
know) created by the factory.
Client: Uses the created
objects only through their
interfaces.

What Problem Does It Solve?
Abstract Factory makes it easy to create and
manipulate objects without knowing exactly what they
are. (This example uses an Iterator—it doesn’t care
what kind.) . This way, It’s easy to add new sorts of
concrete products to the system without changing any
of the code that uses those products.

Abstract factory also makes it easy for your
code to operate in diverse environments. The system
creates a unique Concrete Factory (which creates
unique Concrete Products) for each environment, but
since you use the interface, you don’t actually know
which environment (or which Concrete Product)
you’re using.
Pros () and Cons ()

 The anonymity of the Concrete Factory and Product
promotes reuse—the code that uses these objects
doesn’t need to be modified if the Factory produces
instantiations of different classes than it used to.

 If the product doesn’t do what you want, you may
have to change the Abstract Product interface, which
is difficult. (You have to change all the Concrete
Product definitions).

Often Confused With

Builder: Builder’s Director might use an Abstract
Factory to create Builder objects, but the point of
Builder is that the Director doesn’t know what it’s
building.
Factory Method: A Factory Method is an abstract
method that a derived class overrides. The Abstract-
Factory operation that creates objects is not typically a
“Factory Method” (though it can be in some
implementations).
See Also
Singleton, Factory Method, Builder

©2003 Allen I. Holub www.holub.com A Catalog of Design Patterns

 5

Implementation Notes and Example
interface Collection
{ Iterator iterator();
 //...
}
interface Iterator
{ boolean hasNext();
 Object next();
 //...
}
class Tree implements Collection
{ public Iterator iterator()
 { return new Iterator()
 { // Implement Iterator interface
 // here (to traverse a Tree).
 // (See description of Iterator
 // pattern for implemenation.)
 }
 }
}
class User // uses only interfaces
{
 public void operation(Collection c)
 { Iterator i = c.iterator();
 while(i.hasNext())
 do_something_with(i.next());
 }
}

Collection is the Abstract Factory, Iterator is the
Abstract Product, Tree is the Concrete Factory, and
the anonymous-inner-class Iterator implementation
is the Concrete Product.

There are many variants to Abstract Factory,
probably the most common of which is a concrete
factory that comprises its own interface—there is no
“Abstract Factory” interface as such. This concrete
factory is typically a Singleton. The methods of the
class effectively comprise the Abstract Factory
interface:
class SingletonFactory
{ private static SingletonFactory instance =
 new SingletonFactory();
 public static SingletonFactory instance()
 { return instance;
 }

 void factoryOperation1(){/*...*/}
 void factoryOperation2(){/*...*/};
}
A similar, though more abstract, example is described
in the entry for Factory Method.

There’s no reason why, in the no-Abstract-
Factory variant, the Concrete Factory cannot create a
user interface that allows the physical user to select
which of several possible concrete products to create.
Consider a drawing program whose “shape” factory
creates a user interface showing a palate of possible
shapes. The user can then click on a shape to
determine which Concrete Product (shape derivative)
to create in response to a new_shape() request.

Usage
f(Collection c)
{ Iterator i = c.iterator();
 //...
}

Collection and Iterator are the Abstract Factory and
Product. Concrete Factories and Products are
anonymous.

ButtonPeer peer =
 Toolkit.getDefaultToolkit().
 createButton(b);

Toolkit is both a Singleton and an Abstract Factory.
Most of the methods of Toolkit are abstract, and
getDefaultToolkit() returns an unknown derivative
of Toolkit. There is no need for an Abstract Factory
interface per se.

URL home = new URL(“http://www.holub.com”);
URLConnection c = home.getConnection();
InputStream in = c.getInput();

URL is a concrete URLConnection factory and
URLConnection is an abstract InputStream factory, so
URLConnection is both an Abstract Product and an
Abstract Factory, depending on context. URL,
URLConnection, and InputStream are interfaces by
use, not by declaration.

Appendix A ©2003 Allen I. Holub www.holub.com

6

Builder
Separate the construction of a complex object from its representation so that the same construction process can
create different representations without having to modify the constructing object.

Director: Builds an object
without knowing exactly
what it’s building.
Builder: Interface used by
the Director to do the
construction.
Concrete Builder: Actually
builds the product by
following directions given
by the Director. Typically
created externally (by the
Client) or by an Abstract
Factory.
Product: The object built by
the Builder under the
direction of the Director.

What Problem Does It Solve?
It’s desirable to separate business logic from user-
interface (UI) logic, but in an OO system, you cannot
expose implementation details, A well done class
definition will not have “get” methods that return state
information, so an object must build it’s own UI.
Nonetheless, it’s sometimes necessary for an object to
build more than one representation of itself, and it’s
undesirable to clutter up the business-logic code with
the details needed to build multiple representations.

Builder solves this problem by putting the
representation-specific code into a Builder object
that’s distinct from a Director (“business”)object.
Builder also easily lets you add additional
representations at a later date without impacting
existing code at all.

In non-UI applications. For example, in credit-
card processing, every credit-card-payment processor
requires a different protocol, with identical
information presented in different ways. Builder lets
you build a packet to send to an unknown processor—
protocol information is hidden from you in a hidden
“concrete builder” that you talk to via a public
interface.

Pros () and Cons
()

 Builder nicely isolates the construction of a UI from
it’s representation inside the “business” object,
making it easy to add new (or change) representations
of an object without modifying business logic.

 A change in the Builder interface mandates changes
in all implementing classes.

 It’s awkward to represent some UI elements cleanly
in all representations. (e.g. HTML vs. Swing).
Often Confused With
Bridge: An application building a UI using AWT is a
Director—the actual representation is unknown to the
application. In this way, AWT reifies both Builder and
Bridge.

Visitor: A visitor could build a UI by visiting
every element of a data structure. It is “pulling”
information for UI construction from the model rather
than having that information “pushed” onto it.

See Also
Bridge, Visitor.

 A Catalog of Design Patterns

 7

Implementation Notes and Example
class BusinessObject
{ public void create_UI(Builder b)
 { b.add_text();
 b.add_text_entry_field();
 //...
 }
 public interface Builder
 { void add_text();
 void add_text_entry_field();
 //...
 }
}

class HTML_builder implements BusinessObject.Builder
{ // Implement Builder methods here. This
 // Implementation creates an HTML
 // representation of the object.
 //...
 public String get_HTML_product();
}
class JComponent_builder
 implements Director.Builder
{ JCOmponent product.
 // Implement Builder methods here. This
 // Implementation creates a Jcomponent
 // that represents the object.
 //...
 public Jcomponent
 get_JComponent_product(){/*...*/}
}

class Client
{ Business_object director;
 //...
 public void add_your_ui_to(
 Jcontainer here)
 {
 JComponent_builder b =
 new JComponent_builder();
 director.create_UI(b);
 some_window.add(b.get_JComponent_product());
 }
}

The create_UI() method is passed a Builder that
could be an HTML_builder (that creates an HTML
representation) or a JComponent_builder (that
produces a JComponent). The Director object doesn’t
know which of these products it is building—it just
calls interface methods.

The Client object that’s driving this process does
know what it’s building since it created the Builder.
Consequently, it’s reasonable for it to extract the
correct product.

You could get better abstraction by using an
Abstract Factory to create the Builder objects rather
than new. By the same token, if all output was going to
a file, you could add a print_yourself_to_file(
String name) method to the Builder interface; the
Director could call that method at an appropriate time,
and the Client wouldn’t have to extract anything; it
would just supply a file name.

There’s no reason why the Builder
implementations couldn’t be public inner classes of
the Director. I’d probably do it that way unless I
expected that Builders would be defined elsewhere in
the code.

The Director is “pushing” information into the
builder. Consequently there is no need for accessors
(get methods) in the Director, and the coupling
between the Builder and Director is very light. In
general, accessors violate the integrity of the object by
exposing implementation detail. Avoid them at all
cost.

Usage
URL url = new URL("http://www.holub.com");
URLConnection connection = url.openConnection();
connection.setDoOutput(true);
connection.connect();
OutputStream out = connection.getOutputStream();
while(c = get_character_from_somewhere())
 out.write(c);
out.close();

This code comprises a Director. It uses
Abstract Factory (URLConnection) to get a
Builder (the OutputStream) which builds
an HTTP packet. The Director doesn’t
know that it’s building an HTTP packet,
however. (If an ftp:// URL had been
specified, it would be building an FTP
packet.) The close() call, instead of
getting the product, just sends it off.

Appendix A

8

Factory Method
Base classes use objects that are created by their subclasses. These objects implement an interface known to
the base class, but the base class does not know the actual object type. This way you can defer explicit
knowledge of concrete classes to the subclasses.

Creator: Defines a method
that needs to create an
object whose actual type is
unknown. Does so using
abstract-method call
Concrete Creator: Derived
class that overrides the
abstract object-instantiation
method to create the
Concrete Product.
Product: Interface
implemented by the created
product. Creator accesses
the Concrete Product object
through this interface.
Concrete Product: Object
used by the Creator (base-
class) methods, implements
the Product interface.

What Problem Does It Solve?
This pattern is useful when you can do all (or most) of
the work at the base-class level, but want to put off
deciding exactly which sort of object that you’ll be
working on until run time. (You’ll manipulate objects
that a derived-class creates through an interface that
you define.)

This way of doing things is often useful when you
create an implementation-inheritance-based
“Framework,” that you expect users to customize
using derivation.
Pros () and Cons ()

 Easy to implement when a full-blown Abstract
Factory (see) is overkill.

 This pattern forces you to use implementation
inheritance, with all it’s associated maintenance
problems.

 Inheritance-based framework architectures, in
which Factory Methods are usually found, are not the
best way to achieve reuse. Generally, it’s best if a
framework class can simply be instantiated and used
without forcing a programmer to create a derived class
to make the base-class useful. Implementation

inheritance should be reserved for situations where
you need to modify base-class behavior to perform in
a unusual way.
Often Confused With
Abstract Factory. Factory Method can be used by the
Concrete Factory to create Concrete Products the
creational method does not have to use this design
pattern, though.

A method is not a Factory Method simply
because it manufactures objects. (I’ve seen the term
misused in the Java documentation, among other
places.) In Factory Method, a derived-class override
makes the object.
See Also
Abstract Factory, Template Method

 A Catalog of Design Patterns

 9

Implementation Notes and Example
abstract class Factory
{ private static Factory instance;

 public static synchronized
 Factory instance()
 { if(instance == null)
 instance = new_instance();
 return instance;
 }

 abstract protected Factory new_instance();
 abstract public void operation1();
 abstract public void operation2();

 public void operation3()
 { // Define methods at this level if
 // possible.
 instance.operation1();
 //...
 }
}
class ConcreteFactory
{ protected Factory new_instance()
 { return new ConcreteFactor();
 }
 public void operation1(){...};
 public void operation2(){...};
}

This implementation of Abstract Factory (see) uses
Factory Method to instantiate the Concrete Factory.
The Factory cannot be an interface, here, because it

contains a method definition. It is effectively an
interface in terms of how it’s used, however.

This structure gives you one benefit: You can
refactor the Factory to support new Concrete Factories
(and their associated Concrete Products) simply by
deriving a new class from Factory and providing an
appropriate derived-class method to create instances.

The negative side to this architecture is that you
often must modify the base-class if you add a derived
class. The java.awt.Toolkit Abstract Factory
overcomes this problem while still using an abstract-
base-class architecture by instantiating objects with
Class.forname() rather than an abstract-method
call. This structure is still Factory Method, since the
decision about which class to instantiate is deferred to
run time—it’s just not a derived class that’s making
the decision.

It is inappropriate to use Factory Method if the
only method provided by the derived class is the
factory method itself. You’re adding complexity with
no commensurate benefit.

Never leverage the fact that protected grants
package access in Java. The new_instance() method
should not be called from anywhere other than the
Factory base class.

This pattern is so trivial as to almost not be worth
calling it a pattern. It’s more interesting in C++, where
it’s called a “virtual constructor,” and is implemented
by overriding operator new().

Usage
public class HTMLPane extends JEditorPane
{ public HTMLPane()
 { setEditorKit(
 new HTMLEditorKit()
 { public ViewFactory getViewFactory()
 { return new CustomViewFactory();
 }
 }
);
 }
 private class CustomViewFactory
 extends HTMLEditorKit.HTMLFactory
 { public View create(Element e)
 { return new View()
 { protected Component createComponent()
 { return new Component(){/*...*/};
 }
 }
 }
 }
}

In Swing’s EditorPane. Various HTML
elements are displayed as “views.” When a
parser recognizes an HTML element, it
requests a “view” that renders the component.
You specify a custom representation of an
HTML element by providing a derived-class
override of a create() method that returns a
component of your choice.

Component is the Product. The
(anonymous) implementation of Component is
the Concrete Product. The HTMLFactory is the
Creator and the CustomViewFactory is the
Concrete Creator. createComponent() is the
Factory Method. Similarly getViewFactory()
is a Factory Method that produces custom view
factories. A derived class specifies alternative
view factories by overriding
getViewFactory().

Appendix A

10

Prototype
Create objects by making copies of (“cloning”) a prototypical object. The prototype is usually provided by an
external entity or a Factory, and the exact type of the prototype (as compared to the interfaces it implements)
may not be known.

Prototype: Interface
of object to copy,
must define a
mechanism for
cloning itself.
ConcretePrototype:
(Object that’s copied,
implements cloning
mechanism.
Client: Creates a new
object by asking the
Prototype for a clone.

What Problem Does It Solve?
(1) In Abstract Factory, information needed to
initialize the Concrete Product (constructor arguments,
for example) must be known at compile time. Most
Abstract Factory reifications use the default, “no-arg,”
constructor. When you use Abstract Factory to make
objects that must be in a non-default state, you must
first create the object, then modify it externally, and
this external modification may happen in many places
in the code. It would be better to create objects with
the desired initial (non-default) state and simply copy
those objects to make additional ones. You might use
Abstract Factory to make the prototype object.
(2) Sometimes. objects will be in only a few possible
states, but you have many objects in each state. (The
GoF describe a Note class in a music-composition
system; there are many instances of whole-note, half-
note, and quarter-note objects—but there all whole
notes are in an identical state.
(3) Sometimes classes are specified at runtime and are
created with “dynamic loading” [e.g.
Class.forname("class.name")] or a similarly
expensive process (when initial state is specified in an
XML file, for example). Rather than repeatedly going
through the expense of creating an object, create a
single prototype and copy it multiple times.

Pros () and
Cons ()

 You can install a new concrete product into a
Factory simply by giving it a prototype at run time.
Removal is also easy.

 Prototype can reduce object-creation time.
 Abstract factory forces you to define classes with

marginally different behavior using subclassing.
Prototype avoids this problem by using state. When an
object’s behavior changes radically with state, you can
look at the object as a dynamically specifiable class,
and Prototype is your instantiation mechanism.

 You must explicitly implement clone(), which can
be quite difficult. Worry about the memory-allocation
issues discussed below. Also think about deep-vs.-
shallow copy issues (should you copy a reference, or
should you clone the referenced object?). Finally,
sometimes the clone method should act like a
constructor and initialize some fields to default values.
A clone of a list member cannot typically be in the list,
for example.
See Also
Abstract Factory, State

 A Catalog of Design Patterns

 11

Implementation Notes and Example
abstract class Handler implements Cloneable
{ // Derived classes of Handler must be placed
 // in the com.holub.tools.handlers package,
 // and must have the name ProtocolHandler,
 // where Protocol is the handled protocol.

 public Object clone()
 { Handler copy =
 (Handler)(super.clone());
 // initialize fields of copy here...
 return copy;
 }
 abstract public operation();
}

class User
{ private Handler prototype;
 public User(Handler prototype)
 { this.prototype = prototype;
 }
 public some_method()
 { Handler new_handler=prototype.clone();
 //...
 }
}

class User_of_User
{ private User my_client;
 public User_of_user(String protocol)
 { StringBuffer name = new StringBuffer
 ("com.holub.tools.handlers");
 name.append(protocol);
 name.append("Handler");
 my_client = new Client(
 Class.forname(name.toString()));
 }
}

In this example, we need to create many copies of a
Handler derivitive for a particular protocol. The
prototcol is specified using a string, and the Handler is
created dynamically using Class.forname().
Prototype is used to avoid the overhead of multiple
calls to Class.forname().
You cannot use new to implement a “clone” method.
The following code won’t work:
Class Grandparent
{ public Grandparent(Object args){/*...*/}
 Base my_clone(){ return new Base(args);}
}
Class Parent
{ public Parent(){ super("arg");}
 Derived my_clone(){return new Parent(args)}
}
Class Child
{ public Child(){ super(); }
 /* inherit the base-class my_clone */
}
//...
Grandparent g = new Child();
//...
g.my_clone(); // Returns a Parent, not Child!
Using Java’s clone() solves this problem by getting
memory from super.clone(), but clone() is
protected for some reason, so can’t be used directly
in Prototype. Expose clone() with a public pass-
through method [create()];

Usage

(Not used) Prototype is used in the implementations of several classes, but not in the external interfaces
to any of the Java classes. You do see it in the “Bean Box” application that demonstrates
GUI-style JavaBeans. When you customize an object and put it on the palate, you’re
creating a prototype. When you drag the customized object from the palate to the dialog box
that you’re constructing, you’re making a copy of the prototype.

Appendix A

12

Singleton
A class with a constrained number of instances (typically one). The instance is globally accessible

Singleton: The object being created, defines a class-level
(static) get-instance method that returns the instance. The
class-level get-instance method may create the object if
necessary.

What Problem Does It Solve?
Programs often have a need for single-instance
objects. Objects, for example, might represent a
single database, a single company, and so forth.
Pros () and Cons ()

 Better than a global object in that access is
controlled and the global name space isn’t cluttered
with hard-to-find objects.

 Guarantees that the object is created (and
destroyed) only once—essential when the Singleton
manages a global resource such as a database
connection.

 Easy to abuse. A Singleton called Globals that
contains nothing but public variables is an
abomination. (A singleton containing global constants
is reasonable if the values of the constants need to be
initialized at run time. If the values are known at
compile time, use an interface made up solely of static
final fields and implement the interface when you
need to use the constants.)

Another common abuse of Singleton is to create
a User object that contains all the user-interface code.
In a properly done OO system, objects must be
responsible for building their own user interfaces.
Similarly, you should not have a “system” or “main”
singleton. The “system” is the entire program, not a
single object. “System” objects are what Arthur Riel
calls “God Classes” (in his book Object Oriented
Design Heuristics, ISBN: 0-201-63385-X). Avoid
them.

Often Confused With
Utility: A Utility is a class comprised solely of static
methods, the purpose of which is to provide a grab-
bag of global methods that often compensate for some
deficiency in the language or libraries. Examples
include Java’s Math and Arrays utilities.

Singleton can be implemented exactly the same
way as Utility—as a class made up solely of static
methods. That is, when all fields of a class are static,
the class is effectively an object: it has state and
methods. The main disadvantage to this everything-is-
static approach is that you can’t change the behavior
of a singleton using derivation.
See Also
Abstract Factory

 A Catalog of Design Patterns

 13

Implementation Notes and Examples
Class Singleton1
{ private static Singleton instance;
 private Singleton1()
 { Runtime.getRuntime().addShutdownHook
 (new Thread()
 { public void run()
 { /* clean-up code here */
 }
 }
);
 }

 public static synchronized
 Singleton instance()
 { if(instance == null)
 instance = new Singleton();
 return instance;
 }
}

class Singleton2
{ private static final Singleton instance =
 new Singleton2();
 public static Singleton instance()
 { return instance;
 }

 //...
 //Other than creating object in static
 //initializer, is identical to Singleton1
}

class Singleton3
{ static Type all_fields;
 static Type all_operations();

 // No instance() method, just use the
 // class name to the left of the dot.
}

Use the Singleton1 form when you can’t create the
object at class-load time, (e.g. you didn’t have
information that’s determined by program state or is
passed to the creation method.

You must synchronize the instance() method of
Singleton1 as shown. “Clever” ways to eliminate
synchronization such as “Double-Checked Locking”
don’t work. (Period. Don’t do it!)

Use the Singleton2 or Singleton3 forms when
possible; syncrhonization is not required during
access. (The JVM may load the class at any time, but
it shouldn’t initilize the Class object until first use
(JLS §12.4.1) ; static initializers shouldn’t execute
until first use.

Call addShutdownHook() in the constructor when
program-shut-down clean-up activities (such as
shutting down database connections in an orderly
way) are required. Do not use a finalizer, which might
never be called.

The private constructor prevents someone from
saying new Singleton(), thereby forcing access
through instance().

There is no requirement that only one instance of
the singleton exist, only that the number of instances
are constrained and that access to the instances are
global. For example, a
DatabaseConnection.getInstance() method might
return one of a pool of database connections that the
Singleton manages.

In UML, The role associated with the singleton is
usually also the class name

Usage

Image picture =
Toolbox.getDefaultToolbox().getImage(url);

The Toolbox is a classic form of Singleton1 in the
Examples section. getDefaultToolbox() returns a
Toolbox instance appropriate for the operating system
detected at run time.

Border instance =
 BorderFactory.createBevelBorder(3);

Manages several Border instances, but only one
instance of a Border object with particular
characteristics (in this case, a 3-pixel beveled border)
will exist, so it’s a Singleton. All subsequent requests
for a 3-pixel beveled border return the same object.

Class class_object =
Class.forName("com.holub.tools.MyClass");

There’s only one Class object for a given class, which
effectively contain all static members.

Appendix A

14

[This page intentionally left blank]

 A Catalog of Design Patterns

 15

Structural Patterns

The structural patterns concern themselves with the organization of the program. I think of them as static-model
patterns. Their intent is always to organize classes so that certain ends can be achieved. For example, the
purpose of Bridge is to organize two subsystems in such a way that either subsystem can change radically (even
be replaced entirely) without affecting the code in the other. The whole point of this organization is that you
can make changes to the program without having to change the dynamic model at all.

Appendix A

16

Adapter
Make a class appear to support a familiar interface that it doesn’t actually support. This way, existing code can
leverage new, unfamiliar classes as if they are existing, familiar classes, eliminating the need to refactor the
existing code to accommodate the new classes.

Adaptee: An object that doesn’t
support the desired interface
Target: The interface I want the
Adaptee to support.
Adapters: The class that makes
the Adaptee appear to support
the Target interface. Class
Adapters use derivation. Object
Adapters use containment.

What Problem Does It Solve?
(1) A library that you’re using just isn’t working out, and
you need either to rewrite it or to buy a replacement from
a third party and slot this replacement into your existing
code, making as few changes as possible.
(2) You may need to refactor a class to have a different
interface than the original version (you need to add
arguments to a method, or change an argument or return-
value type). You could have both old-style and new-style
versions of the methods in one giant class, but it’s better
to have a single, simpler class (the new one) and use
Adapter to make the new object appear to be one of the
old ones to existing code.
(3) Use an adapter to make an old-style object serialized
to disk appear to be a new-style object when loaded.
Pros () and Cons ()

 Makes it easy to add classes without changing code.
 Identical looking Object and Class adapters behave in

different ways. (e.g. f(new Adapter(obj)) is
implemented in both Class and Object adapters; the
Object Adapter simply wraps obj, but the Class adapter
copies the fields of obj into its base-class component.
Copying is expensive. On the plus side, a class adapter is
an Adaptee, so can be passed to methods expecting an
object of the Adaptee class and also to methods that
expect the Target interface. It’s difficult to decide
whether an Object or Class adapter is best. It’s a
maintenance problem to have both.

 Difficult to implement when the library is designed
poorly. For example, java.io.InputStream is an
abstract class, not an interface, so you can’t use the
Class-Adapter pattern to create a RandomAccessFile that
also supports the InputStream interface (you can’t
extend both RandomAccessFile and InputStream).

You can use Object Adapter, or
you can refactor the code to make

InputStream an interface (as it should have been) and
then implement that interface in an
AbstractInputStream that has all the functionality now
in InputStream. Collections do it correctly.
Often Confused With
Mediator: Mediator is the dynamic-model equivalent of
Adaptor. Adapters are passive, passing messages to
single “adaptees.” Mediators interact with many
colleagues in complex ways.
Bridge: Adapters change interfaces. Bridges isolate
subsystems. Adapters are little things, Bridges are big.
Bridge might be reified as a set of 50 adapters (e.g. AWT
peer interfaces define Adapters, but the complete set of
peers are a Bridge).
Decorator: The encapsulated object in Decorator has
the same interface as the container. The decorator
modifies the behavior of some method. Object
Adapters have different interfaces than the contained
object and don’t change behavior.
See Also
Mediator, Bridge, Decorator

 A Catalog of Design Patterns

 17

Implementation Notes and Example
class ObjectIterator extends ObjectInputStream
 implements Iterator
{ private boolean at_end_of_file = false;
 public ObjectIterator(InputStream src)
 throws IOException
 { super(src); }
 public boolean hasNext()
 { return at_end_of_file == false;
 }
 public Object next()
 { try
 { return readObject();
 }
 catch(Exception e)
 { at_end_of_file = true;
 return null;
 }
 }
 public void remove()
 {throw new UnsupportedOperationException();
 }
}
class WrappedObjectIterator
 implements Iterator
{ private boolean at_end_of_file = false;
 private final ObjectInputStream in;
 public
 WrappedObjectIterator(
 ObjectInputStream in)
 { this.in = in; }
 public boolean hasNext()
 { return at_end_of_file == false;
 }
 public Object next()
 { try
 { return in.readObject();
 }
 catch(Exception e){/* as above */}
 }
 public void remove()
 {throw new UnsupportedOperationException();
 }
}

ObjectIterator is a “Class” Adapter that adapts an
ObjectInputStream to implement the Iterator
interface. This way, you can use existing methods that
examine a set of objects by using an Iterator to
examine objects directly from a file. That is, the
method doesn’t know or care whether it’s reading
from a file or traversing a Collection of some sort This
flexibilty can be useful when you’re implementing an
Object cache that can overflow to disk, for example.
More to the point, you don’t need to write two
versions of the object-reader method, one for files and
one for collections.

WrappedObjectIterator is an “Object” Adapter
version of ObjectIterator that uses containment
rather than inheritance.

The “Class” Adapter, since it is an
ObjectInputStream that implements Iterator, can be
used by any method that knows how to an use either
ObjectInputStream or Iterator. The “Object” Adapter,
since it encapsulates the input stream, cannot be used
as an ObjectInputStream, but you can use the input
stream for a while, temporarily wrap it in a
WrappedObjectIterator to extract a few objects, then
pull the input stream out again.

The two implementations require about the same
amount of work. so it’s a judgment call which one is
best. It all depends on what you’re using it for.

Usage

InputStream in = new StringInputStream("hello");

Adapter lets you access a String as if it were a
file (InputStream). Similar adapters include
ByteArrayInputStream, CharArrayReader,
PipedInputStream, PipedReader,
StringReader. Don’t confuse these adapters
with the Decorators in java.io
(BufferedInputStream, PushbackInputStream,
etc.)

Appendix A

18

Bridge
In order to decouple subsystems so that either subsystem can change radically without impacting any code in
the other one, put a set of interfaces between two subsystems and code to these interfaces.

Abstraction: (Frame) A platform-
independent portal into platform-
specific code.
Implementor: (Frame Peer)An
interface used by the Abstraction to
talk to a platform-specific
implementation. Typically is also
the Abstract Product of an Abstract
Factory.
Refined Abstraction: (MyFrame)
Often omitted, a version of the
Abstraction, customized for a
particular application.
Concrete Implementor:
(WindowsFramePeer,
MotifFramePeer) platform-specific
implementation of Implementor

What Problem Does It Solve?
Often used to achieve platform independence.
Application-specific code on one side of the bridge
(the “business logic”) uses platform-dependant code
on the other side through a well defined interface. You
reimplement that interface, and the “business” logic
doesn’t know or care. Change the business logic, and
the platform-specific interface implementations don’t
care. Often, you’ll combine Bridge and Abstract
Factory so that the Factory can supply the correct set
of implementers at run time, further isolating the two
sides of the bridge. Examples of Bridge in Java are
AWT and JDBC.
Pros () and Cons ()

 In a pure inheritance model, you’d have a base class
that implemented some behavior, and derived classes
that customized this behavior for a specific platform.
In Bridge, the base class is effectively replaced by an
interface, so the problems associated with
implementation inheritance are minimized and the
total number of classes are reduced.

 It’s difficult to implement interfaces so that each
implementation behaves identically . Java’s AWT
Bridge implements windowing components for
different operating environments, but the Motif
implementation behaved differently on the screen than
the Windows implementation.

Often Confused With
Bridge is more of an architecture than a design

pattern. A Bridge is typically a set of classes (called
“Abstractions,” unfortunately—they’re typically not
abstract) that contain references to objects that
implent a platform-independent interface in a
platform-dependant way (Adapters). The Adapters are
typically created by the Abstraction object using a
Singleton-based Abstract Factory.

Adapter. Bridges separate subsystems, Adapters
make objects implement foreign interfaces. A one-
interface bridge looks like a Class Adapter.
Façade: Façade simplifies the interface to a
subsystem, but might not isolate you from the details
of how that subsystem works. Changes made on one
side of the façade might mandate changes both to the
other side of the façade and to the façade itself.
See Also
Abstract Factory, Singleton, Adapter, Façade,
Mediator

 A Catalog of Design Patterns

 19

Implementation Notes and Example
interface FramePeer
{ void setTitle(String title);
}
// Many other peer interfaces...

class MotifFramePeer implements FramePeer
{ //...
 void setTitle(String title)
 { // Motif-specific code goes here
 }
}
class WindowsFramePeer implements FramePeer
{ //...
 void setTitle(String title)
 { // Windows-specific code goes here
 }
}
// Implementations for other platforms...
//===
abstract class java.awt.Toolkit
{ abstract
 FramePeer createFrame(Frame target);
 static Toolkit getDefaultToolkit()
 { // returns appropriate toolkit,
 // depending on operating environment.
 }
}
class WindowsToolkit extends Toolkit
{ FramePeer createFrame(Frame target)
 { return new WindowsFramePeer(/*...*/);
 }
}
// Toolkit implementations for other
// platforms ...
//===
class Frame extends java.awt.Container
{ FramePeer peer;
 public void addNotify()
 { peer = Toolkit.getDefaultToolkit().
 createFrame(this);
 }
 public void setTitle(String title)
 { peer.setTitle();
 }
}
class MyFrame extends Frame
{ public void setTitle(String title)
 { super.setTitle(title.toUpperCase());
 }
}

Bridge is way too large a pattern to show a real
example on half a pag, and the code at left is probably
too condensed to be useful. I recommend that you look
at the real code in the Java sources (which ship with
the JDK). The bridge interfaces are the “Peers”
defined in the java.awt.peer package. Implementations
of the Peer interfaces are, unfortunately, not provided
in the SDK.

In the current example, two design patterns are
intermingled Frame and FramePeer comprise a Bridge
between your application program and a platform-
specific windowing system. (Frame has the role of
Abstraction, and FramePeer has the role of
Implementor.) FramePeer is an interface, and the
Frame gets instances of platform-specific
Implementations from an Abstract Factory (Toolkit).
[Toolkit is the Abstract Factory, WindowsToolkit is a
Concrete Factory, FramePeer is the Abstract Product,
and WindowsFramePeer is a Concrete Product.] In
Bridge, WindowsFramePeer has the role of Concrete
Implementor, so it and the FramePeer interfaces
simultaneously participate in two patterns.

The main architectural issue is that the two sides
of the bridge can change independently. That is, I can
change both the Frame class and the application that
uses Frame objects without impacting any of the
Implementor objects on the other side of the bridge.
By the same token, I can change an Implementor (or,
because I’ve used an Abstract Factory, easily add an
Implementor for a new platform) without affecting the
Frame or the applications that use it.

Appendix A

20

Composite
Organize a runtime hierarchy of objects that represent container/content (or whole/part) relationships as a
collection of objects that implement a common interface. Some of the implementers of this interfaces define
stand-alone objects, others define container that can hold additional objects, including other containers.

Component: An
interface or abstract
class that represents
all objects in the
hierarchy.
Composite: A
Component that can
hold other
Components. It
doesn’t know
whether these
subcomponents are
other Composites or
are Leaves.
Leaf: A Component
that stands alone; it
cannot contain
anything.

What Problem Does It Solve?
Often data structures can be organized into hierarchies
in which everything in the hierarchy has a common
subset of similar properties. For example, directories
are files that can contain other files; a file can be
atomic (a simple file not containing anything) or a
subdirectory (a file that holds references to other files,
including subdirectories). Composite lets you create
these sort of containment hierarchies in such a way
that a given container doesn’t need to know whether
its contents are atomic or composite objects, they both
implement the same interface, so can be treated
identically.
Pros () and Cons ()

 The container is very simple to implement because
it treats all contents uniformly.

 It’s easy to add new Component classes, just derive
another class from the Component class (or interface).

 The Component tends to specify an unsatisfactory
least-common-denominator interface.

 It’s not always meaningful or appropriate for every
Composite or Leaf to implement every method of the
Component. It’s an awkward runtime error if a
unimplementable method throws an exception.

Often Confused With
Chain of Responsibility is also implemented using a
runtime hierarchy of objects, but the point of Chain of
Responsibility is to catch messages in appropriate
places.
Decorator also uses a containment strategy, but
Decorators add or modify functionality of a single
containee. The point of Composite is to make it easier
to manipulate a set of contained objects.
See Also
Chain of Responsibility, Decorator, Bridge, Builder

 A Catalog of Design Patterns

 21

Implementation Notes and Example
abstract class Element
{ private Rectangle position;
 public Element(Rectangle position)
 { this.position = position;
 }
 protected void prepare(Surface s)
 { // modify the surfaces coordinate
 // system so that (0,0) is at the
 // current Elements position.
 }
 public abstract void render(
 Graphics parent_surface);
}

class Form extends Element
{ private Collection subelements
 = new ArrayList();
 public Form(Rectangle position)
 { super(position);
 }
 public void add(Element subelement)
 { subelements.add(subelement);
 }
 public void render(Graphics s)
 { prepare(s);
 Iterator i = subelements.iterator();
 while(i.hasNext())
 ((Element)i.next()).render(s);
 }
}
class StaticText extends Element
{ private String text;
 public StaticText(Rectangle position,
 String text)
 { super(position);
 this.text = text;
 }
 public void render(Graphics s)
 { prepare(s);
 s.draw_text(text);
 }
}

Bridge nicely complements Composite. For example,
if Form, StaticText, and Picture were interfaces,
implmented by concrete classes on the other side of a
Bridge (and created with an Abstract Factory), then
you could build a form without knowing exactly how
it would render itself: It could just as easily render
itself as a Swing JComponent as an XML file. A
generic form Builder might parse a description of a
form and construct one using the Abstract
Factory/Bridge approach to Composite.

Element, at left, is an abstract class that defines
operations common to all Element objects (e.g. the
Element’s relative position on the form). I’ve avoided
making this information public (thereby damaging the
integrity of the object) by providing a prepare()
method that modifies the coordinate system of some
drawing Surface (not shown) so that the current
object can render itself in the upper-left corner of the
Surface. This way a getPosition() method is
unnecessary and the resulting class system is more
robust.

The Form class has the role of Composite with the
pattern. It’s an Element that holds other Elements,
some of which might be Forms and some of which
might be StaticText. The point is that the Form
class’s render() method doesn’t know or care about
the actual type of the subelement. All subelements are
rendered identically [by passing them render()
messages].

The StaticText class is a Leaf. It is an Element
that doesn’t contain other Elements, thus forms a leaf
on the runtime-hierarchy tree. It has to know how to
render itself, of course. Here, it just delegates to the
Surface object.

Usage
Dialog box = new Dialog();
box.add(new Label("Lots of information"));

Panel subpanel = new Panel();
subpanel.add(new Label("Description"));
subpanel.add(new TextField());
box.add(subpanel);

A Dialog is a Composite that can hold Leaves
(like Label) and other Composites (like Panel).
This example also nicely demonstrates the
affinity between Composite and Bridge, since
AWT is also a bridge. (A DialogFrame, for
example simultaneously a Composite in
Composite and an Abstraction in Bridge.

Another good example of Composite are the
new JDOM classes (www.jdom.org). An XML
document is a list of Elements.

Appendix A

22

Decorator
Attach new responsibilities to (or modify the behavior of) an object at run time. Decorators can vastly simplify
class hierarchies by replacing subclassing with containment.

Component: an interface for
objects that can have
responsibilities added to them
(or have behavior modified) at
runtime.
Concrete Component: an object
to which additional
responsibilities or new behavior
is attached.
Decorator: wraps a Component
and defines an interface that
conforms to the Component’s
interface.
Concrete Decorator: (implicit)
extends the Decorator to define
the additional behavior.
(The Blocking_Segmented_List
combines the Decorator and

Concrete Decorator roles into a single class—a commonplace reification of Decorator. See notes for the
Example, at right.)

What Problem Does It Solve?
Using derivation hierarchies to add features is not a
great idea. Consider an input stream. To add buffering,
you’d derive a class that overrode the input() method
to do buffering (doubling the number of classes). To
add pushback, you’d have to derive from both classes,
providing buffered and nonbuffered versions of
input() that pushed characters back. In fact, every
feature that you add through subclassing will require
you to double the size of the class hierarchy.
Decorator, on the other hand, is linear. To add a
feature, you add exactly one Decorator class, no
matter what the size of the original hierarchy.

Decorator also nicely solves the problem of
runtime configuration. Sometimes, you don’t know
exactly how an object should behave until runtime.
Behavior might be specified in a configuration file, for
example. Decorator allows you to assemble (at run
time) a composite object that contains exactly the mix
of capabilities that you need without having to know
which of these capabilities will be needed when you
write the code.
Pros () and Cons ()

 The size and complexity of the class hierarchy is

considerably reduced.
 A feature introduced in a decorator (such as

pushback) is at best hard (or even dangerous) to
access if the decorator is itself decorated. The system
is very sensitive to the order in which decorators are
applied. Java’s PushbackInputStream works well at
the outermost layer, but a PushbackInputStream
wrapped with a BufferedInputStream doesn’t work (it
doesn’t push back into the buffer.
Often Confused With
Adapter: changes an interface, Decorator changes
behavior.
Chain of Responsibility: passes messages to the most
appropriate handler. In Decorator, messages are
handled by the outermost Concrete Decorator.
Composite: Decorators add responsibilities.
Composites never do.
See Also
Strategy.

 A Catalog of Design Patterns

 23

Implementation Notes and Example
public interface Segmented_List extends List
{ void addFirst(Object o);
 void addLast(Object o);
 //...
 Object removeFirst();
 Object removeLast();
}
public class Segmented_LinkedList
 extends LinkedList
 implements Segmented_List
{}
public class Blocking_Segmented_List
 implements Segmented_List
{ private Segmented_List component;
 private int max_size ;
 public Blocking_Segmented_List(
 Segmented_List component,
 int max_size)
 { this.component = component;
 this.max_size = max_size;
 }

 private void block_if_empty() {/*...*/}
 private void block_if_full() {/*...*/}

 public synchronized boolean
 contains(Object o)
 {return component.contains(o); }
 public synchronized Object get(int index)
 {return component.get(index); }
 //...

 public synchronized void addFirst(Object o)
 { block_if_full();
 component.addFirst(o);
 }
 public synchronized Object removeLast()
 { block_if_empty();
 return component.removeLast();
 }
 //...
}

Think fish. Bigger fish
are Decorators that
implement the same interfaces as as
the smallest fish (the Component). If a smaller fish has
swallowed a hook and line; talk to it by yanking the
string.

Since LinkedList doesn’t implement an interface
that defines all its methods, I created Segmented_List
and Segmented_LinkedList, a simple Class Adapter
(that makes LinkedList appear to implement an
interface that it doesn’t implement).

Blocking_Segmented_List is a Decorator that
modifies the behavior of the LinkedList so that a thread
that a thread that tries to remove something from an
empty list will block (be suspended) until some other
thread adds something to the list—a common inter-
thread communication architecture.

Many methods (such as contains() and get()
behave exactly as they do in the LinkedList, so they are
implemented as simple pass-through methods. Other
methods (such as addFirst() and removeLast()
implement different behavior, so must be implemented
at length in the Concrete Decorator.

The behavior of every method in the blocking
version at left have changed: everything is now
synchronized. If only a handful of methods change
behavior (or a Decorator just adds a method), simplify
implementation with an abstract Decorator class that
does nothing but define simple pass-through methods to
the contained object. Extend the abstract class to form a
Concrete Decorator, overriding those methods whose
behavior changes.

Other Decorators might add other features. A
Lazy_List might add a close() method which allows
from the list, but disallow additions, for example.

Usage
JComponent widget = new JtextArea(80,200);
widget = new JScrollPane(widget);
Jframe frame = new JFrame();
Frame.getContentPane().add(widget);

Combines Decorator and Composite: Composite
because everything’s a JComponent, Decorator
because each successive layer adds functionality
(and changes appearance).

InputStream in = new FileInputStream("x.txt");
in = new BufferedInputStream(in);
in = new PushBackInputStream(in);

The data source is wrapped by a decorator that adds
buffering, which is in turn wrapped by a decorator
that supports pushback. Could add decompression,
etc., with additional decorators (GzipInputStream,
etc).

Appendix A

24

Facade
Provide a single interface through which all the classes in a complex subsystem are manipulated. Façade allows
you to treat a complex subsystem as if it were a single course-grained object with a simple easy-to-use
interface.
Facade: Provides a simple interface to a complex subsystem.

Subsystem Classes: Classes
that comprise one or more
complex subsystems.

What Problem Does It Solve?
Subsystems, especially older ones, are masses of
spaghetti code. When two subsystems must interact,
they often make calls directly into each other, and these
myriad tendrils of connectivity are a maintenance
nightmare. The subsystems become very delicate since
making seemingly insignificant changes in a single
subsystem can affect the entire program. Façade
addresses the problem by forcing programmers to use a
subsystem indirectly through a well-defined single
point of access, thereby shielding the programmers
from the complexity of the code on the other side of the
façade.

Façade improves the independence of the
subsystems, making it easy to change—or even
replace—them without impacting outside code.

 Façade also provides a manageable way to
migrate legacy code to a more object-oriented structure.
Start by breaking up the existing code into a small
number of independent subsystems, modeled as very
heavyweight objects with well-defined, simple
interfaces. Eliminate all “end runs” around these
interfaces. Then systematically replace each subsystem.
This evolutionary approach significantly reduces the
risk inherent in an all-at-once rewrite.
Pros () and Cons ()

 Coupling relationships between subsystems are
weakened, improving maintenance and flexibility.

 It’s still possible for programmers to ignore the
Façade and use subsystem classes directly. Though
some designers see this direct access as an asset. I see
little to recommend the practice. One exception would

be a “private” subsystem
interface that the Façade
method makes available only

to certain clients (who are properly authenticated, for
example). A Façade method might return an object that
implements an auxiliary interface to the guarded
subsystem, for example.
Often Confused With
Bridge: Both Façade and Bridge help maintenance by
isolating subsystems from each other. Façade makes a
subsystem look like a single object, however. Bridges
are typically made up of large collection of objects.
You can use a façade is to simplify access to a bridge.
(e.g. A Company class could act as a facade to the JDBC
bridge. You’d say Company.get_employee() and the
façade takes care of the complex series of JDBC calls
needed to create the Employee object.)
Mediator: A Façade’s communication with a
subsystem is unidirectional, or at least simple. Your
program sends a message to the Façade, which causes it
to send several messages to a subsystem. The
subsystem does not talk to, or even know about, the
Façade object. Mediators have complex bi-directional
conversations with subsystems.
See Also
Bridge, Mediator, Observer

 A Catalog of Design Patterns

 25

Implementation Notes and Example

class XML_storage
{
 public store_to_XML(OutputStream out);
 { /* Code goes here that uses the
 * introspection APIs in the System
 * class to get the class name and the
 * values of all the public fields in
 * the class. The name and the values of
 * those fields are then used to build a
 * JDOM tree, which is passed to an
 * "outputter" to send an XML
 * represenation of the tree to the
 * OutputStream.
 */
 }

 public Object load_from_XML(
 InputStream in);
 { /* Code goes here that creates a
 * JDOM SaxBuilder for the InputStream,
 * uses it to build a JDOM, instantiates
 * a class named in the XML file,
 * then initializes that class using
 * one of the constructors or a series
 * of get/set methods.
 */
 }
}

The problem with providing a full-blown example of a
Façade is that there’s entirely too much code to
represent in 40 or so lines—that’s the whole point of
the pattern.

I’m imagining that the stoarge method uses Java’s
introspection APIs to analyze the document and
discover the fields to save. (It could just save
everything that’s public, or it could look for
“JavaBean” style get/set methods.) I would use the
JDOM XML APIs to build a tree representation of an
XML output file, and then send the tree to a JDOM
“outputter” class that would write the appropratie
XML to a file. The loading function reverses this
proces. By using the façade, you isolate yourself from
all the mechanics of introspection, XML parsing, and
JDOM.

Messaging is “one-way;” there is no complex
back-and-forth interaction between the XML_storage
façade and the subsystems that it uses. The Façade
object simply builds a tree, then outputs the tree.

We have a façade within a façade here. The
SAXBuilder class itself comprises a facade that
isolates you from the mechanics of the SAX-parser
subsystem.

The JDOM, XML, and Introspection APIs can be
accessed directly by the program. Ease of maintenance
is compromised if you do so and any of these
subsystems change. You could avoid this problem by
putting the subsystems in an inaccessible class (such
as the com.sun.xxx packages in Java). A Singleton can
then be used to get a Façade, through which all access
occurs.

Usage
Some_string.matches("^[a-zA-Z]{1,3}$"); String acts as a Façade for the regular-

expression-matching package, isolating the user
from things like Pattern objects.

Socket s = new Socket("holub.com",7);
InputStream in = s.getInputStream();

These two lines hide several pages of C code,
and all the enormous complexity needed to get a
socket to work in a cross-platform way.

AppletContext a = getAppletContext();
a.showDocument("http://www.holub.com/index.html")

AppletContext is a Façade for the browser
subsystem. Note that this architecture prohibits
“end runs” around the façade because subsystem
classes are accessible only through the Façade.
You can’t get at them directly.

Appendix A

26

Flyweight
To minimize memory use, make objects smaller by using extrinsic state (e.g. putting state information into a
container or computing it on each access) and sharing (using multiple references to single objects rather than
multiple copies of objects).

Flyweight: Defines an interface for
messages that use extrinsic state.
Concrete Flyweight: Implements
Flyweight with methods that compute
state information or get it from an
external source (extrinsic state).
Unshared Concrete Flyweight: Not
used here, but if present, implements
Flyweight using internal state variables
rather than extrinsic state.
Flyweight Factory: Creates and
manages flyweights. Supplies an
existing Concrete Flyweight if one
exists, otherwise creates one.

What Problem Does It Solve?
An object is defined by what it does, not how it

does it. Objects are collections of methods; state
information can be inside or outside of the object.

Sometimes, programs with large numbers of
objects require more memory for those objects than is
available. In a document editor, every character of a
naïve implementation might hold its value, font, color,
size, encoding, position on the page, etc. This
information, duplicated in most characters, can be
moved to a containing Paragraph, If characters take up
more space than references, keep multiple references
to a single “character” object rather than many
identical characters.

A naive implementation of the Game of Life
“cell” might carry a Boolean “is-alive” state and
references to eight neighbors. A small 1024x1024 grid
requires about 40 Megabytes just to hold the cells. In
a Flyweight version, the cell’s container knows who
the cell’s neighbors are, and passes that information to
the cell. The cell needs to remember its is-alive state
only. By making the neighbor references extrinsic,
you reduce the memory requirement for the basic grid
to a single Megabyte.

In a “flyweight pool” all cells with the same state
are represented by a single object.

Pros () and Cons ()
 Some programs simply cannot be written in an

object-oriented way without using flyweight.
 When you use flyweight pools, equality can be

determined using Java’s == operator.
 If extrinsic state is stored in a container, then you

must access the object through the container. If
extrinsic state is computed (e.g. go to a database every
time a particular attribute is used), then access is slow.

 Flyweights add complexity to the code, impacting
maintenance and increasing code size.
Often Confused With
Composite. Consider a paragraph that contains both
font information and a list of contained glyph objects,
one of which is set in a different font. Paragraph is a
Composite. It is a glyph that holds other glyphs.
(Paragraph extends Glyph.) The oddball glyph that’s
set in its own font is actually a Paragraph that
contains a single character, but since a Paragraph is a
Glyph, the containing Paragraph object doesn’t need
to know that the oddball character is not a single-
character Glyph.
See Also
Composite, Prototype, Singleton

XML_Element <<abstract>>

Attributes

+<<static>> create (name: String) :XML_Element
+ operation (parent: XML_Element)

Concrete_XML_Element

name: String

+operation (parent: XML_Element)

name:String

cache *

Unshared_Concrete_XML_Element

name: String

+operation (parent: XML_Element)

The create()
method serves as the
Flyweight Factory. The
rest of the class is
abstract methods that
define the Flyweight
interface. You could
also use a factory
class and an interface.

Flyweight
Flyweight Factory

Concrete
Flyweight

Unshared
Concrete
Flyweight

 A Catalog of Design Patterns

 27

Implementation Notes and Example
abstract class XML_Element
{
 static Map cache = new HashMap();

 public static
 XML_Element create(String name)
 {
 name = name.intern();
 XML_Element exists =
 (XML_Element)(cache.get(name));
 if(exists == null)
 { exists =
 new Concrete_XML_Element(name);
 cache.put(name,exists);
 }
 return exists;
 }

 private XML_Element(){}

 abstract void operation(
 XML_Element parent);

 private static class Concrete_XML_Element
 extends XML_Element
 { private String name;
 Concrete_XML_Element(String name)
 { this.name = name.intern();
 }
 void operation(XML_Element parent)
 { //...
 }
 public int hashCode()
 { return name.hashCode();
 }
 public boolean equals(Object o)
 { return name ==
 ((Concrete_XML_Element)o).name ;
 }
 }

 XML_Element is a Featherweight that represents an
“Element” in an XML “Document.” (Effectively a node
in a tree.) The element is identifed only by name, though
a more realistic Implementation would identify it both
by name and attribute values.

Sharing is used to guarantee that only one instance
of a given element exists. (You could argue resonably
that XML_Element is a Singleton; that is, sharing is
implemented using Singleton.) The private constructor
(and the fact that it’s abstract) force users to use
create() rather than new XML_Element(). The
create() method keeps a cache of XML_Element objects,
keyed by name. If an object with the requested name
exists, it is just returned. The create() method adds an
element to the cache only if an element with that name
does not already exist. If the Element doesn’t need to
know its own name, its name field can be eliminated to
save space.

Don’t be confused by the fact that XML_Element
fills two roles in the pattern: Flyweight Factory and
Flyweight. Putting the abstract methods of XML_Element
into an interface to separate them from the “factory”
funtionality makes sense in many situations. Here, it just
adds an unnecessary class.

The intern() method of the String class enforces
sharing in a similar way (see Usage).

XML_Element also has one extrinsic attribute: its
parent. A heavyweight implementation might keep a
parent reference as a field, but here the parent reference
is passed as an argument to operation(). This
organization saves space, but means that operations on
elements that need to know their parent must be started
at the root node so that the parent reference can be
passed down to them..

Usage
JPanel p = new JPanel();
p.setBorder(
 BorderFactory.createEmptyBorder(5,5,5,5));

The border size is extrinsic—it’s fetched at runtime
from the Component that it borders. The
BorderFactory makes sure that two borders with the
same internal state don’t exist (when you ask for the
second one, you get back a reference to the first one).

StringBuffer b = new StringBuffer();
//... assemble string here.
String s = b.toString().intern();

If an existing String literal has the same value as the
assembled StringBuffer, then use the existing literal,
otherwise add the new value to the JVM’s internal
table of String literals and use the new one.

Appendix A

28

Proxy
Access an object through a “surrogate or placeholder” object.

Proxy: Maintains a
reference, and controls
access, to the Real Subject.
Implements the same
interface as the Real Subject
so it can be used in place of
the Real Subject.
Subject: An interface
implemented by both the
Proxy and the Real Subject,
allows them to be used
interchangeably.
Real Subject: The real
object that the Proxy
represents.

What Problem Does It Solve?
A virtual proxy creates expensive objects on

demand. For example, database access might be
deferred by a proxy until the data is acutually used. A
large image may be fetched across the network in the
background while the user of the image thinks that it’s
already there. This process is often called lazy
instantiation. Virtual proxies are also useful in
implementing a copy-on-write strategy. When you
request a copy of an object, you get back a proxy that
simply references the original object. Only when you
modify the so-called copy does the proxy actually
copy the state from the original object into itself.

A remote proxy is a client-side represention of a
server-side object. The proxy relays requests across
the network to be handled by a sever-side object.
CORBA and RMI stubs are proxies for server-side
skeleton objects

A protection proxy controls access to certain
methods of a second object that implements the same
interface. The proxy method might be passed an
authentication token and throw an exception if the
token didn’t authorize the requested operation.

A smart reference automatically handles anoying
backround tasks like deletion. Java’s WeakReference
is an example.

Pros () and Cons
()

 Proxies hide many optimizations from their users,
simplifying the code considerably.

 Once the real object has been created, access
through the proxy adds overhead. The whole point of
the pattern is to be able to treat the proxy as if it were
the real object, so a method like get_real_object()
violates the spirit of the pattern.

 You may need a myriad remote proxies into a large
subsystem. It's beter to create a single remote proxy
for a Facade than it is to create proxies for every class
in the subsystem.
Often Confused With
Decorator: A protection proxy in particular could be
looked at as a Decorator. There’s no difference in
structure, but the intent is different—Decorator
permits undecorated objects that can be accessed
indiscriminately.
See Also
Decorator, Flyweight

 A Catalog of Design Patterns

 29

Implementation Notes and Example
class Employee
{ private long id;
 private Money wage; // hourly wage
 private Timesheet hours_worked;
 public Employee(long id)
 { this.id = id;
 hours_worked = Timesheet.create(id);
 wage = Database.get_hourly_wage(id);
 }
 void print_paycheck()
 { Money weekly_wage =
 hours_worked.compute_salary(wage);
 //...
 }
}
abstract class Timesheet
{ //...
 public static Timesheet create(long id)
 { return (data_already_in_memory)
 ? new Real(id)
 : new Proxy(id);
 }
 public abstract
 Money compute_salary(Money wage);
 //--
 private static class Proxy
 extends Timesheet
 { Timesheet real_timesheet = null;
 long id;
 Proxy(long id){this.id = id;}
 public Money compute_salary(Money wage)
 { if(real_timesheet == null)
 real_timesheet = new Real(id);

 return real_timesheet.
 compute_salary(wage);
 }
 }
 //--
 private static class Real extends Timesheet
 { Real(long employee_id)
 { // load data from the database.
 }
 public Money compute_salary(
 Money wage)
 { // Compute weekly salary.
 return null;
 }
 }
}

Assume that hourly wage is used heavily enough to
justify a database access when the object is crated, but
that the total hours worked is used only rarely and the
Timesheet is needed by only a few methods.

I've made the employee identifier a long to
simplify the example. In real code, it would be an
instance of class Identity.

You could reasonably argue that that the
Employee should just use lazy loading for the
Timesheet and dispense with the Proxy object, but the
more that Timesheet was used, the less weight this
argument would hold.

I've made Timesheet an abstract class rather than
an interface so that I can use it as a factory; otherwise,
I'd need a separate Timesheet_factory class.

Accessor methods (get and set functions) are evil
because they expose implementation detail and impact
maintencance. Though it’s tempting to use them in this
pattern, you’ll note that no get_salary() or
get_hours_worked() method is needed because of the
way that I’ve structured the messaging system. Don't
ask for information you need to do the work; ask the
object that has the information to do the work for you.
One exception to the get/set-is-evil rule is
Database.get_hourly_wage(). A database is
fundamentally non-object-oriented; it's just a bag of
data with no operations at all. Consequently, it must
be accessed procedurally.

If the Timesheet.Proxy threw away the data after
computing the salary, it would be a Flyweight, not a
Proxy.

Usage
public void paint(Graphics g)
{ Image img=Toolkit.getDefaulToolkit().getImage(
 new URL("http://www.holub.com/image.jpg"));
 g.drawImage(img,...);
}

The object returned from getImage() is a proxy
for the real image, which is loaded on a
background thread. (getImage() is
asynchronous; it returns immediately, before
completing the requested work.) You can use
the image as if all bits had been loaded, even

Appendix A

30

when they haven’t.

 A Catalog of Design Patterns

 31

[This page intentionally left blank]

Appendix A

32

Behavioral Patterns

The behavioral patterns concern themselves with the runtime behavior of the program. I think of them as
dynamic-model patterns. They define the roles that objects take on and the way that these objects interact with
each other. For example, Chain of Responsibly defines the way that a set of objects route messages to each
other at runtime (so that the object best suited to field a message actually handles the message). All of these
objects are instances of the same class (or at least implement the same interface), so there’s not much in the
way of structure in this pattern. It’s the dynamic behavior of the objects that are important.

 A Catalog of Design Patterns

 33

Chain of Responsibility
A set of objects relay a message from one to another along a well defined route, giving more than one object a
chance to handle the message. The object that’s best suited to field a given message actually does the handling.
It’s possible for more than one object on the route to act on the message.

Handler: Defines event-handling
interface and optional successor link.
Concrete Handler: Handles request or,
by doing nothing, causes event to be
forwarded to successor.
Request: Strictly speaking, not part of
the pattern, but often present.
Encapsulates information about event
that occurred in order to pass this
information to the Handler.

What Problem Does It Solve?
The classic example is a GUI system built on
Composite, where the GUI is containment hierarchy.
The leaves are the buttons and other “widgets,” closest
to the surface.” Containers (frame windows, etc.) are
interior nodes. A message (e.g. hot-key press) is routed
up the tree until an object is found (a menu item?) that
can process the message.

It’s difficult to determine at compile time exactly
which object is best suited to handle the message. In
fact, the most suitable object might change with
program state. Chain of Responsibility defers the
choice of handler until runtime.

Servlet “filters” are an appropriate use of the
pattern. An incoming HTTP packet is passed through a
sequence of filters, which can process the packet
directly or pass the packet to the next filter in the chain
(or both).

Also consider a system of derived classes in
which each constructor parses from a String the
information of interest to it, and then it passes the
String to the next constructor in the chain.
Pros () and Cons ()

 The dynamic behavior of the program can be easily
changed at runtime by adding new handlers to the
chain or changing the ordering of handlers.

 The coupling between objects in the program is
loosened if an implementation permits Handler classes
not to know about each other.

 In Windows, when a mouse moves one pixel, the
WM_MOUSEMOVE message is first received by the window
that has focus, perhaps a text control. This control
doesn’t know how to handle it, so it passes the

message to the containing panel, which
passes it to the MDI child window, which passes it to
the main frame, which passes it to the menu bar, which
passes it to each menu item. None of these objects can
handle the message, so it’s discarded. This is a lot of to
accomplish nothing.

 Many implementations force you to use
implementation inheritance to specify a message-
handler, inappropriately forcing strong coupling
between Handler classes and introducing fragile base
classes into the model.

 Visual event propagation mandates a Controller that
fields events and sends messages to a model-level
class. Controllers are difficult to maintain if the object
model changes, and often force you to expose
implementation details through get/set methods. This is
one reason why the pattern was abandoned by Java for
a system based on Observer (see).
Often Confused With
Composite specifies one way that a chain of
responsibility might be ordered (from contained object
to container, recursively). This is not the only way to
order the chain, however.
See Also
Composite, Observer

Appendix A

34

Implementation Notes and Example
interface Request{};
class Help_request implements Request
{ // Help related state and methods
}
class Print_request implements Request
{ // Printing related state and methods
}

class Req_Handler
{ private Req_Handler successor;
 public Req_Handler(Handler successor)
 { this.successor = successor;
 }
 public void dispatch(Request event)
 { if(event instanceof Help_request)
 do_help((Help_request)event);
 else if(event instanceof Print_request)
 do_print((Print_request)event);
 }
 protected void do_print(
 Print_request event)
 { successor.dispatch(event);
 }
 protected void do_help(Help_request event)
 { successor.dispatch(event);
 }
}

class Concrete_handler extends Req_Handler
{ public Concrete_handler(Req_Handler next)
 { super(next);
 }
 protected
 void do_help(Print_request event)
 { // handle a help request here
 }
}

Define various kinds of events by deriving classes from
Request. Derived-class state and methods are
customized to handle a particular event type. Request
itself is a “tagging” interface. It exists so that you can
pass requests using a generic Request reference.

Initiate an event by creating a Request derivative of
the appropriate type and then sending a dispatch()
message to the Handler at the head of the chain (with
that Request object as its argument). The dispatch()
method figures out which kind of request is being made
and calls the correct handler [do_xxx()]. Default handler
methods do nothing, but relay the request to the next
Handler in the chain.

The dispatch() method is particularly ugly since it
has to be modified every time we add a new request
type. It is type safe (because I’m using instanceof),
but normally, good OO code avoids this sort of switch-
like mechanism in favor of a interface-inheritance
approach. You could eliminate the need to continually
modify dispatch() by using Java’s “introspection” APIs
(in the Class class) to assemble the appropriate method
call from the string version of the Reqest-class name
[Xxx_request is mapped to do_xxx()], but that would
be really ugly.

Normally, propagation stops at a Concrete Handler
that overrides a do_xxx() method. The override can
allow propagation to continue by calling
dispatch(event) as the last thing it does.

The recursive list traversal is elegant, but might not
work in memory-limited environments when there are a
lot of handlers in the chain.

Usage
public class MyFilter

 implements javax.servlet.Filter
{ //...
 public void doFilter(ServletRequest req,
 ServletResponse rsp,
 FilterChain chain)
 { //...
 chain.doFilter(request, response);
 //...
 }

}

Each object on the route typically keeps a reference to its
sucessor, but the pattern doesn’t mandate this organization.
For example, a centralized dispatcher might pass a
message to several objects in turn. What’s important is that
the object, not the dispatcher, decides whether or not to
handle the message. Servlet filters are dispatched by the
web server. Tomcat, for example, uses information that
you put into a configuration file to determine the dispatch
sequence.

class My_window extends Component
{ public boolean keyDown(Event e, int key)
 { // code to handle key press goes here.
 }
}

Chain-of-Command GUI handling was abandoned as
unworkable in version 1.1 of Java. (in favor of the better
Observer pattern). This deprecated method is a holdover
from then.

 A Catalog of Design Patterns

 35

Command
Encapsulate a request or unit of work into an object. Command provides a more capable alternative to a
function pointer because the object can hold state information, can be queued or logged, and so forth.

Command: Defines an
interface for executing an
operation or set of operations.
Concrete Command:
Implements the Command
interface to perform the
operation. Typically acts as an
intermediary to a Receiver
object.
Invoker: Asks the command to
carry out a request.
Receiver: Knows how to carry
out the request. This
functionality is often built in
to the Command object itself.

What Problem Does It Solve?
You can’t have a function pointer in an OO system
simply because you have no functions, only objects
and messages. Instead of passing a pointer to a
function that does work, pass a reference to an object
that knows how to do that work.

A Command object is effectively a transaction
encapsulated in an object. Command objects can be
stored for later execution, can be stored as-is to have a
transaction record, can be sent to other objects for
execution, etc.

Command is useful for things like “undo”
operations. It’s not possible to undo an operation
simply by rolling the program back to a previous state,
because the program might have had an effect on the
outside world while transitioning from the earlier state
to the current one. Command gives you a mechanism
for actively rolling back state by actively reversing
side effects like database updates.

By encapsulating the work in an object, you can
also define several methods, and even state information,
that work in concert to do the work. For example, a
single object can encapsulate both “undo” and “redo”
operations and the state information necessary to
perform these operations.

Command also nicely solves “callback” problems
in multithreads systems. A “client” thread creates a

commend object that performs some operation, then
notifies that client when the operation completes. The
client then gives the Command object to a second thread
on which the operation is actually performed.
Pros () and Cons ()

 Command decouples operations from the object that
actually performs the operation.
Often Confused With
Strategy. The invoker of a Command doesn’t know what
the Command object will do. A Strategy object
encapsulates a method for doing a specific task for the
invoker.
See Also
Memento, Strategy

Appendix A

36

Implementation Notes and Example
abstract class Cursor extends Cloneable
{ public Object clone();
 public char character_at();
 public void delete_character_at();
 public void insert_character_at(
 char new_character);
 public void move_to(Cursor new_position);
 public void move_right();
 //...
}
class Text_Editor
{ private Cursor current=Cursor.instance();
 private LinkedList undo_stack =
 new LinkedList();
 private LinkedList redo_stack =
 new LinkedList();
 public void insert_character(char c)
 { process(new Inserter(c));
 }
 public void delete_character()
 { process(new Deleter());
 }
 private void process(Action command)
 { command.do_it();
 undo_stack.addFirst(command);
 }
 public void undo()
 { Action action =
 (Action) undo_stack.removeFirst();
 action.undo_it();
 redo_stack.addFirst(action);
 }
 public void redo()
 { Action action =
 (Action) redo_stack.removeFirst();
 action.do_it();
 undo_stack.addFirst(action);
 }
 private interface Action
 { void do_it ();
 void undo_it();
 }
 private class Inserter implements Action
 { Cursor where = (Cursor) current.clone();
 char inserted;

 public Insert_action(char new_character)
 { inserted = new_character;
 }
 public void do_it()
 { current.move_to(where);
 current.
 insert_character_at(inserted);
 current.move_right();
 }
 public void undo_it()
 { current.move_to(where);
 current.delete_character_at();
 }
 }
 private class Deleter implements Action
 {
 Cursor where = (Cursor) current.clone();
 char deleted;
 public void do_it()
 { current.move_to(where);
 deleted = current.character_at();
 current.delete_character_at();
 }
 public void undo_it()
 { current.move_to(where);
 current.
 insert_character_at(deleted);
 current.move_right();
 }
 }
 //...
}

Most of the work is done by the Cursor, which reifies
Iterator (see). The Text editor is driven by a Client
class (not shown) that interprets user input and tells
the editor to do things like insert or delete characters.
The Text_Editor performs these request by creating
Command objects that implement the Action
interface. Each Action can both do something and also
undo whatever it did. The editor tells the Action to do
whatever it does, and then stacks the object. When
asked to undo something, the editor pops the Action
off the undo stack, asks it to undo whatever it did, and
then puts it on a redo stack.. Redo works in the a
similar way, but in reverse.

Usage
new Thread()
{ public void run(){ /*...*/ }
}.start();

Thread is passed a Runnable Command object
that defines what to do on the thread.

java.util.Timer t = new java.util.Timer();
t.schedule(new java.util.TimerTask()
 { public void run()
 {System.out.println(�hello world�);}
 }, 1000);

Print “hello world.” one second from now. The
TimerTask is a Command object. Several
TimerTask objects may be queued for future
execution.

 A Catalog of Design Patterns

 37

Interpreter
Implement an interpreter for a language, first defining a formal grammar for that language, and then
implementing that grammar with a hierarchy of classes, one derived class per production or nonterminal.

Abstract Expression: Defines an
“interpret” operation (or operations) . A
node in the abstract syntax tree.
Terminal Expression: Implements an
operation for a terminal symbol (which
appears in the input).
Nonterminal Expression: Implements
an operation for a nonterminal symbol
(a grammatical rule).
Context: global information (e.g.:
variable values.)

What Problem Does It Solve?
You sometimes cannot define all the required

behavior of a program when you write it. For example,
there’s no way for the browser writer to predict the
way a site designer might want a web page to behave.
An interpretive language like JavaScript can add
behavior to the program that wasn’t contemplated by
the author.

The interpreter pattern defines one way to build an
interpreter. You first define a formal grammar that lists
rules (called productions) that describe the syntax of
the language. You then implement a class for each
production. These classes share a Context object from
which they get input, store variable values, and so
forth. An interpreter might (or might not) create an
efficient output processor (like a state machine) that
does the actual work..
Pros () and Cons ()

 The pattern says nothing about how to create the
graph of objects that comprise the interpreter (the
Abstract Syntax Tree). Interpreter often requires a
nontrivial parser to construct this graph, and often this
parser can just do the interpretation .

 Modifying the grammar is relatively straightforward:
you just create new classes that represent the new
productions.

 Interpreter doesn’t work well if the grammar has
more than a few productions. You need too many
classes. Use traditional compiler tools (such as jyacc,
cup, etc.) or a hand-coded recursive-decent parser for
nontrivial languages.

 Why provide an interpreter when you have a
perfectly good one already in memory: the JVM? Your
users write scripts in Java and provide you with a string
holding the class name. Use Java’s “introspection” API’s
to load and execute the user-supplied code, or, if the user
code implements a well-defined interface, then execute
directly. Given:
 public inteface User_extension
 { void do_something();
 }
instantiate and execute a user object like this:
 String name =
 System.getProperty(�user.extension�);
 class user_mods = Class.forname(name);
 User_extension user_extention_object =
 (User_extension) user_mods.newInstance();
 user_extension_object.do_something();
Write your own class loader and/or security manager to
create a sandbox .

Applets demonstrate this technique. Rather than
interpret code (à la JavaScript), you provide a class to
the browser, which it executes. Applets communicate
with the browser via the AppletContext façade.
Often Confused With

Chain of Responsibility is used in interpreter to
evaluate the input sentence. It’s Interpreter only when
the objects implement grammatical rules.

Interpreter is implemented as a Composite.
See Also
Strategy, Visitor

Appendix A

38

Implementation Notes and Example
interface Logic
{ public static class Values
 { static Map vars = new HashMap();
 static void assign(String key,
 boolean value)
 { if(key==null || key.length() <= 0)
 throw new Exception(�Logic�);
 vars.put(key, value?Boolean.TRUE
 :Boolean.FALSE);
 }
 static boolean lookup(String key)
 { Object got = vars.get(key);
 return ((Boolean)got).booleanValue();
 }
 }
 boolean evaluate();
}

class AND_logic implements Logic
{ Logic left, right;
 public AND_logic(Logic left, Logic right)
 { this.left = left;
 this.right = right;
 }
 public boolean evaluate()
 { return left.evaluate()
 && right.evaluate();
 }
}

class OR_logic implements Logic{/*...*/}
class NOT_logic implements Logic{/*...*/}

class Assignment_logic implements Logic
{ Logic left, right;
 public Assignment_logic(Logic l, Logic r)
 { this.left = l;
 this.right = r;
 }
 public boolean evaluate()
 { boolean r = right.evaluate();
 Logic.Values.assign(left.toString(),r);
 return r;
 }
}
class Variable implements Logic
{ private String name;
 public Variable(String s){name = s;}
 public String toString(){ return name; }
 public boolean evaluate()
 { return Logic.Values.lookup(name);
 }
}

Consider the following Boolean-expression grammar.
e ::= e ‘&’ e | e ‘|’ e
 | ‘!’ e | ‘(‘ e ‘)’
 | var ‘=’ e | var

The code at left comprises an interpreter for that
grammar. (I’ve not shown OR_logic, and NOT_logic
classes, since they’re trivial variants on AND_logic.).
Variable values are held in the Values Singleton. Create
an interpreter for “X=(A & B) | !C” as follows:

 Logic term = new AND_logic(
 new Variable(�A�),
 new Variable(�B�)
);
 term = new OR_logic(
 term,
 new NOT_logic(new Variable(�C�))
);
 term = new Assignment_logic(
 new Variable(�X�), term);

Assign values in the code (or by reading user input)
like this:

 Logic.Values.assign(�A�, true);
 Logic.Values.assign(�B�, true);
 Logic.Values.assign(�C�, false);
 boolean result = term.evaluate();

The Interpreter pattern makes no suggestions as to
how you might construct the abstract-syntax tree that
represents the expression (the tree of Logic objects),
but some sort of parser is implied.

Alternatively, you could use Visitor to traverse
the syntax tree: Visit the notes in depth-first order;
code in the visitor object determines what happens as
it visits each node. You could traverse once to test
internal integrity, traverse again to optimize the tree, a
third time to evaluate the expression, etc. Separating
the structure of the abstract syntax tree from the logic
of code generation and optimization can clean up the
code substantially, but the visitor can end up as a
quite-large class and will be hard to maintain as a
consequence.

Usage
java.util.regex.Pattern p=Pattern.compile(�a*b�);
java.util.regex.Matcher m =
p.matcher(�aaaaab�);
boolean b = m.matches();

Uses Interpreter internally (See the Source
code shipped with the JDK.)

 A Catalog of Design Patterns

 39

Iterator
Access the elements of an aggregate object sequentially without exposing how the aggregation is implemented.

Iterator: interface for accessing
and traversing elements.
Concrete Iterator: Implements
Iterator and keeps track of
current position.
Aggregate: Defines an interface
for creating an iterator. (Omit if
no Abstract Factory required.)
Concrete Aggregate: Holds the
data. Implements the creation
interface to manufacture an
iterator.

What Problem Does It Solve?
Iterators isolate a data set from the means that’s

used to store the set. For example, Java Collection
and Map classes don’t implement a common interface.
You can, however, extract an iterator from a
Collection [using iterator()]and from a Map [using
values().iterator()]. Pass the iterator to a method
for processing, thereby isolating that method from
knowledge of how the objects are stored.

The set of objects need not be stored internally at
all—an iterator across a Flyweight might read objects
from disk, or even synthesize them.

Iterators make it easy to have multiple
simultaneous iterators across an aggregation.

Iterators can manipulate the aggregation. The
Cursor class in the Command example is an iterator.
Java’s ListIterator can modify the list.

External or active iterators are controlled by the
client (e.g. Java’s Iterator class). Internal or passive
iterators are controlled by the aggregate object. A tree
might have a traverse_postorder() method that’s
passed a Command object that is, in turn, passed each
node in the tree. External iterators are often harder to
implement than internal ones.
Pros () and Cons ()

 Promotes reuse by hiding implementation.
 A client may modify the elements of the

aggregation, damaging the aggregate (e.g. change the
key in sorted aggregate.)

 The aggregate might store references to its iterators;
memory leaks are possible if you discard an iterator
without notifying the aggregate.

 It’s difficult to control the traversal algorithm and
retain the generic quality of an iterator. E.g.: There’s
no way to specify a post-order traversal from the
iterator returned from a TreeSet. This problem
extends to most Composite reifications.

 It’s difficult to implement Iterator in a environment
that supports simultaneous iteration and modification.
(If you add an item to an aggregate while iterations are
in progress, should the iterator visit the newly added
item? What if the list is ordered and you’ve already
passed the place where the new item is inserted?
Should attempts to modify the aggregation fail if
iterators are active? There are no “correct” answers to
these questions.)
Often Confused With
Visitor is usually implemented with a passive iterator.
Iterators should examine data, not modify it. Visitors
always modify the data.
See Also
Composite, Visitor,

Appendix A

40

Implementation Notes and Example
class Tree implements Collection
{ private Node root = null;
 private static class Node
 { public Node left, right;
 public Object item;
 public Node(Object item)
 { this.item = item; }
 }
 Iterator iterator()
 { return new Iterator()
 { private Node current = root;
 private LinkedList stack =
 new LinkedList();
 public Object next()
 { while(current != null)
 { stack.addFirst(current);
 current = current.left;
 }
 if(stack.size() != 0)
 { current = (Node)
 (stack.removeFirst());
 Object to_return=current.item;
 current = current.right;
 return to_return;
 }
 throw new NoSuchElementException();
 }
 public boolean hasNext()
 { return !(current==null
 && stack.size()==0);
 }
 public void remove(){ /*...*/ }
 };
 }
 public interface Examiner
 { public void examine(Object o); }
 void traverse(Examiner client)
 { traverse_inorder(root, client);
 }
 private void traverse_inorder(Node current,
 Examiner client)
 { if(current == null)
 return;
 traverse_inorder(current.left, client);
 client.examine (current.item);
 traverse_inorder(current.right, client);
 } // ...
}

The code at left implements a simple binary tree. (I’ve
ommited the methods of Collection that aren’t relevant
to Iterator.) The iterator() method returns an external
iterator that implments the java.util.Iterator
interface. Use it like this:
 Iterator i = t.iterator();
 while(i.hasNext())
 System.out.print(i.next().toString());
You can’t use recursive traversal in an external iterator
because next() must return after getting each element,
and you can’t stop the recusion in mid stream. My
implemenation uses a stack to remember the next
parent to visit in the travsersal (the same information
that would be on the runtime stack in a recursive
traversal). You can easily see the extra complexity
mandated by this approach, but other nonrecursive
traversal algorithms are, if anything, messier.

The traverse() method demonstrates an internal
iterator. You pass traverse() a Command (see)
object that implements the Examiner interface.
Traverse does a simple recursive traversal, passing
each node to the Examiner’s examine() method in
order. Here’s an example:
 t.traverse(
 new Tree.Examiner()
 { public void examine(Object o)
 {System.out.print(o.toString());
 }
 });
As you can see, the code is much simpler, but you
loose the flexibility of an external iterator (which you
could keep positioned in the middle of the tree for
example—an internal iterator doesn’t give you the
option of not advancing, or of terminating the iteration
early).

Both iterators access private fields of Tree. Think
of an external iterator as an extension of the object
that creates it. Private access is okay if it doesn’t
expose implementation information.

Usage
f(Collection c)
{ Iterator i = c.iterator();
 while(i.hasNext())
 do_something(i.next());
}

Iterators are used heavily in all the Java
Collection classes.

String query = �SELECT ID FROM TAB�;
ResultSet results = stmt.executeQuery(query);
while (results.next())
 String s = rs.getString(�ID�);

A database cursor iterates across rows in a table.

 A Catalog of Design Patterns

 41

Mediator
Define a single object that encapsulates a set of complex operations. Mediator simplifies your code by hiding
complexity; it loosens coupling between the objects that use the mediator and the objects the mediator uses.

Mediator: (Often omitted)
defines an interface to
Colleagues.
Concrete Mediator: Implements
Mediator interface to interact
with Colleagues and manage
communication between them.
Colleagues: A system of
interfaces and classes that
communicate bidirectionally
through the mediator rather than
directly. Note that the client is a
colleague

What Problem Does It Solve?
Mediator makes complex operations simple.
Too-complex code is damaging to any program.
Mediator solves this problem by taking complex code
that would otherwise appear all over the program and
concentrating it into a single object with a simple
interface that’s used all over the program. Mediators
hide complex protocols.
Pros () and Cons ()

 Mediators improve code organization in many
ways: reducing subclassing, decoupling subsystems,
and simplifying messaging systems and protocols.

 Complexity can creep into a Mediator over time as
you customize it for new applications. You’ve missed
the point if you allow a Mediator to become too
complex.. Several Mediators tailored for specific
applications can help. Be careful not to add back the
complexity you’re trying to eliminate.

 A mediator can turn into a “God” class if you’re not
careful. A good OO program is a network of
cooperating agents. There is no spider in the middle of
the web pulling the strands. Focus your mediators on
doing only one thing.

Often Confused With
Façade eases simple one-way communication with a
subsystem and also Isolates the entire subsystem from
the rest of the program. Mediators encapsulate
complex interactions, but communication is bi-
directional and they do not isolate anything from
anything.
Bridge and Mediator both reduce coupling between
subsystems. Bridge define a standard (often
complicated) interface and then implements it in
various ways. Bridges are systems of classes.
Mediators are objects that have simple interfaces, but
do complex work. at run time. Mediator does promote
decoupling, though. If a protocol changes, for
example, the scope of that change is typically limited
to the Mediator itself.
See Also
Façade, Bridge

Appendix A

42

Implementation Notes and Example
class Query
{ static String ask(String query)
 { final Object done = new Object();
 final Object init = new Object();
 final JFrame frame = new JFrame(�Query�);
 final JTextField answer= new JTextField();
 answer.setPreferredSize(
 new Dimension(200,20));
 frame.getContentPane().setLayout(
 new FlowLayout());
 answer.setPreferredSize(
 new Dimension(200,20));
 frame.getContentPane().add(answer);
 frame.getContentPane().add(
 new JLabel(query));
 answer.addActionListener // submit
 (new ActionListener()
 { public void actionPerformed(
 ActionEvent e)
 { synchronized(init)
 { synchronized(done)
 { frame.dispose();
 done.notify();
 }}}});
 frame.addWindowListener // cancel
 (new WindowAdapter()
 { public void windowClosing(
 WindowEvent e)
 { synchronized(init)
 { synchronized(done)
 { frame.dispose();
 answer.setText(��);
 done.notify();
 }}}});
 synchronized(done)
 { synchronized(init)
 { frame.pack();
 frame.show();
 }
 try{ done.wait(); }
 catch(InterruptedException e){}
 }
 return answer.getText();
 }
}

The code at left let’s you ask the User a simple
question. When you make this call:

String answer = Query.ask(�How are you�);
The method displays the small window shown at right.
You
type
your
answer
and hit Enter, the window shuts down, and ask(...)
returns what you typed (in this case, the string
�Fine�). If you click the “X” box in the upper right
corner of the control, the window shuts down and
ask(...) returns an empty string.

The details of the code are actually not relevant to
the current discussion. The main issue is that the code
is quite complex for what it does (and would be even
more complex if you were working in the raw OS
rather than Java), but the user exercises all this
complexity by doing a simple thing. The details are all
hidden. Moreover, code that uses Query is now
considerably simplified, and a lot of complicated junk
isn’t duplicated all over the program.

Note that Mediator does not isolate the program
from the entire Swing subsystem. Unlike Façade,
which discourages “end runs” around the Façade.
Mediator does not prohibit other parts of your
program from talking directly to Swing. Also note that
the communication between the mediator (Query) and
its colleagues (everything else) is bi-directional, and
that all communication—at least in the context of
asking the user a question—happens through the
mediator.

Usage
URL home = new URL(“http://www.holub.com”);
URLConnection c = home.getConnection();

//...
OnputStream out = c.getOutput();
c.write(some_data);

The output stream returned from the URLConnection is
a Mediator. You just write data to it. It encapsulates the
complex interaction needed to establish a connection
and implement whatever protocol was specified in the
original URL.

JButton b = new JButton(“Hello”);
//...

The JButton deals with all the complexity of fielding
mouse clicks, changing the image the user sees when
the button should be “down,” etc.

JOptionPane.showMessageDialog(“Error...”); Hides the complexity of creating and showing a dialog
box.

 A Catalog of Design Patterns

 43

Memento
Encapsulate an object’s state in such a way that no external entity can know how the object is structured. An
external object (called a caretaker) can store or restore an object’s state without violating the integrity of the
object.

Originator: Creates a memento that holds a
“snapshot” of its current state.
Memento: Stores the internal state of the
Originator in a way that does not expose the
structure of the Originator. Supports a “wide”
interface used by the originator and a “narrow”
interface used by everyone else.
Caretaker: Stores the mementos, but never operates
on them.

What Problem Does It Solve?
The ubiquitous get/set (accessor) function is evil.
Allowing access to internal fields—either directly by
making them public or indirectly through an
accessor—flies in the face of every basic object-
oriented principle. The whole point of an OO structure
is that you can make radical changes to an object’s
implementation without impacting the code that uses
those objects. An object should not get the data that it
needs to do work—it should ask the object that has the
data to do the work for it (delegation). The only
exception to this rule is an accessor that returns an
object that opaquely encapsulates the data. The point
is not to expose implementation details.

If you use simplistic accessors, even small
changes, like changing a field’s type, impact every
part of the program that uses that accessor. Programs
that use accessors are very difficult to maintain, and
simply aren’t object oriented. (A program isn’t OO
just because it uses classes, derivation, etc., or is
written in Java or C++.).

But what if an external entity needs to remember
the state of some object, perhaps to restore that state in
an undo operation or equivalent? Memento solves this
problem by having the original object return a black
box, an impenetrable container that the caretaker can
store, but not manipulate. The object that
manufactures the black box does know what’s in it,
though, so it can use this information at will (to restore
state, for example).

Pros () and Cons ()
 Allows an object’s state to be stored externally in

such a way that the maintainability of the program is
not compromised.

 Allows a “caretaker” object to store states of classes
that it knows nothing about.

 Versioning can be difficult if the memento is stored
persistently. The originator must be able to decipher
mementos created by previous versions of itself.

 It’s often unclear whether a memento should be a
“deep” copy of the Originator. (i.e. should recursively
copy not just references, but the objects that are
referenced as well). Deep copies are expensive to
manufacture. Shallow copies can cause memory leaks,
and referenced objects might change values.

 Caretakers don’t know how much state is in the
memento, so they cannot perform efficient memory
management.
Often Confused With
Command objects encapsulate operations that are
known to the invoker. Mementos encapsulate state—
operations are unknown to the caretaker.

Appendix A

44

Implementation Notes and Example
class Originator
{ private String state;
 private int more;

 private class Memento
 { private String
 state=Originator.this.state;
 private int more =Originator.this.more;
 public toString()
 { return state + ", " + more ;
 }
 }

 public Object get_memento()
 { return new Memento();
 }

 public Object restore(Object o)
 { Memento m = (Memento) o;
 state = o.state;
 more = o.more;
 }
}

class Caretaker
{ Object memento;
 Originator originator;
 public void capture_state()
 { memento = originator.get_memento();
 }
 public void restore_yourself()
 { originator.restore(memento);
 }
}

Making Memento private with nothing but private
fields guarantees that unsafe access is impossible.
(Some idiot might try to circumvent encapsulation

using the introspection APIs, but “against stupidity,
even the gods themselves contend in vain.”) The
caretaker treats the memento as a simple Object.
Memento defines a “narrow” interface (toString())
that doesn’t expose structure. A much more
complicated memento is preseted earlier in the book in
the Game-of-Life example.

One great example of Memento is an “embedded”
object in Microsoft’s OLE (Object Linking and
Embedding) framework. Consider an Excel
spreadsheet that you’ve embedded as a table in a
Word document. When you create the table, Excel is
running. It negotiates with Word to take over some of
its UI (Excel adds menus to Word’s menu bar and is in
control of the subwindow that holds the table, for
example). When you click outside the table, Excel
shuts down and produces a memento—a blob of bytes
that holds its state—and an image that Word displays
in place of the original Excel UI. All that Word can do
with this image is display it. All that Word can do
with the data “blob” is hold on to it. The next time the
user wants to edit the table, Word passes the blob back
to Excel, but Excel has to figure out what to do with it.
Since Excel’s data representation is complely hidden
from Word, it can change the representation without
impacting any of the code in Word itself.

A memento can have a “narrow” interface that
does something like display its state on a screen or
store its state as an XML file. Just make sure that this
interface doesn’t expose any structure to the caretaker.

“Undo” is hardly ever implementable solely with
a memento (see Command).

Usage
class Originator implements Serializable{ int x; }

ByteArrayOutputStream bytes = new ByteArrayOutputStream();
ObjectOutputStream out= new ObjectOutputStream(bytes);

Originator instance = new Originator(); // create
out.writeObject(instance); // memento
byte[] memento = bytes.toByteArray();

ObjectInputStream in = // restore object
 new ObjectInputStream(// from memento
 new ByteArrayInputStream(memento));
instance= (Originator) in.readObject();

A byte array is about as black as a
box can be. Decorator is used, here,
to produce a system of streams that
manufacture the memento. This
example also nicely illustrates a flaw
in Decorator—that you sometimes
have to access an encapsulated
decorator to do work.

 A Catalog of Design Patterns

 45

Observer (Publish/Subscribe)
When an object changes states, it notifies other objects that have registered their interest at run time. The
notifying object (publisher) sends an event (publication) to all its observers (subscribers).

Subject: The Publisher—notifies
Observers that some event has
occurred. Keeps a subscription list
and a means for modifying the list.
Sometimes Subject is an interface
implemented by a Concrete
Subject.
Observer: Defines an interface for
notifying observers.
Participant: Implements the
Observer interface to do something
when notified..

What Problem Does It Solve?
In Chain of Responsibility a button notifies a parent of
a press event like this:

class Window
{ void button_pressed() {/*...*/}
 //...
}

class Button implements Window
{ private Window parent;
 public Button(Window parent)
 { this.parent = parent; }
 on_mouse_click()
 { parent.button_pressed(); }
}

An abstraction-layer (business) object must learn
about presses through a Mediator called a
Controller—a Window derivative that overrides
button_pressed() to send a message to the business
object .The coupling relationships between the
controllers, the abstraction layer, and the presentation
(the button) are too tight. There’s too much code
affected if anything changes.

The Observer pattern addresses the problem by
adding an interface between the “publisher” of an
event (the button) and a “subscriber” (the business
object that’s actually interested in the button press.
This interface decouples the publisher and makes it
reusable in the sense that it’s a stand-alone component,
with no dependencies on the rest of the system. A
publisher can notify any class that implements the

subscriber interface.
Pros () and Cons ()

 Observer nicely isolates subsystems, since the
classes in the subsystems don’t need to know anything
about each other except that they implement certain
“listener” interfaces. This isolation makes the code
much more reusable.

 There’s no guarantee that a subscriber won’t be
notified of an event after the subscriber cancels its
subscription—a side effect of a thread-safety. (AWT
and Swing both have this problem.)

 Publication events can propagate alarmingly when
observers are themselves publishers. It’s difficult to
predict that this will happen.

 Memory leaks are easily created by “dangling”
references to subscribers. (When the only reference to
an object is the one held by a publisher, a useless
might not be garbage collected. It’s difficult in Java,
where there are no “destructor” methods, to guarantee
that publishers are notified when an object becomes
useless.
Often Confused With
Command, Strategy
See Also
Chain of Responsibility

Appendix A

46

Implementation Notes and Example
public final class NotifyingCollection
 implements Collection
{ private final Collection c;
 public NotifyingCollection(Collection wrap)
 { c = wrap; }
 private final Collection subscribers
 = new LinkedList();
 public interface Subscriber
 { void added (Object item);
 void removed(Object item);
 }
 synchronized public void addSubscriber(
 Subscriber subscriber)
 { subscribers.add(subscriber); }
 synchronized public void removeSubscriber(
 Subscriber subscriber)
 { subscribers.remove(subscriber);
 }
 private void notify(boolean add, Object o)
 { Object[] copy;
 synchronized(this)
 { copy = subscribers.toArray();
 }
 for(int i = 0; i < copy.length; ++i)
 { if(add)((Subscriber)copy[i]).added (o);
 else ((Subscriber)copy[i]).removed(o);
 }
 }
 public boolean add(Object o)
 { notify(true,o); return c.add(o); }
 public boolean remove(Object o)
 { notify(false,o); return c.remove(o); }
 public boolean addAll(Collection items)
 { Iterator i = items.iterator()
 while(i.hasNext())
 notify(true, i.next());
 return c.addAll(items);
 }
 public int size() { return c.size(); }
 public int hashCode(){ return hashCode();}
 // pass-through implementations of other
 // Collection methods go here...
}

The example at left is a Decorator (see) that wraps a
collection to add a notification feature. Objects that
are interested in finding out when the collection is
modified register themselves with the collection.
In the following example, I create an “adapter” (in the
Java/AWT sense, this is not the Adapter pattern) that
simplifies subscriber creation. By extending the
adapter rather than implementing the interface, we’re
saved from having to implement uninteresting
methods. I then add a subscriber:

class SubscriberAdapter implements
 NotifyingCollection.Subscriber
{ public void added(Object item){}
 public void removed(Object item){}
}

 NotifyingCollection c =
 new NotifyingCollection(new LinkedList());
c.addSubscriber
(new SubscriberAdapter()
 { public void added(Object item)
 { System.out.println("Added " + item);
 }
 }
}

This implemenation of Observer is simplistc—copy is
a very inefficent stragegy for solving the problem of
one thread adding or removing a subcriber while
notifications are in progress. A more realistic
implementation was presented earlier in the book.

Observer encompases both one-to-many and
many-to-one implementations. For example, one
button could notify several observers when it’s
pressed, but by the same token, several buttons could
all notify the same subscriber, which would use some
mechanism (perhaps an event object passed as an
argument) to deermine the publisher.

Usage
JButton b = new JButton("Hello");
b.addActionListener(
 new ActionListener()
 { public void actionPerformed(ActionEvent e)
 { System.out.println("World");
 }
 });

Print World when the button is pressed. The
entire AWT event model is based on Observer.
This model supercedes a Chain-of-
Responsibility-based design that proved
unworkable in an OO environment..

Timer t = new java.util.Timer();
t.scheduleAtFixedRate(new TimerTask()
{ public void run()
 { System.out.println(new Date().toString());
 }
}, 0, 1000);

Print the time once a second. The Timer object
notifies all its observers when the time interval
requested in the schedule method elapses.

 A Catalog of Design Patterns

 47

State
Objects often need to change behavior when they are in certain states. A good solution defines an interface
comprising all methods who change behavior; interface implementations define each state.

Context: Defines a public
interface to the outside
world, methods of which
change behavior with object
state. Maintains an instance
of a Concrete State class.
State: Defines an interface
that comprises all the
behavior that changes with
state.
Concrete State: Implements
State to define behavior for
a particular state.

What Problem Does It Solve?
Objects often need to change behavior with state. The
“obvious” way to implement this change is for each
method to contain a large switch statement or
equivalent, with a case for each possible state, and the
selector is an instance variable. This structure is
difficult to maintain at best, and changing the state
table or introducing new states is difficult, requiring
many changes to many methods.

In the State pattern, each state is represented by
an object that implements the behavior of a single
state. An instance variable references an object that
implements the current-state’s behavior. A public
method that changes behavior with state just delegates
to the current state-object. To change state, modify the
current-state variable to reference an object that
implements behavior for the new state.
Pros () and Cons ()

 State machines are easier to maintain since all the
behavior for a given state is in one place.

 Eliminates long hard-to-maintain switch statements
in the methods.

 State tables (indexed by current state and stimulus,
holding the next state) are difficult to implement.

 Increases the number of classes in the system along
with concomitant maintenance problems.

 If only a few methods change behavior with state,
this solution might be unnecessarily complex.
Often Confused With
Strategy. The state objects do implement a strategy for
implementing a single state, but that strategy is not
provided by an outside entity.
See Also
Singleton.

Appendix A

48

Implementation Notes and Example
public final class LockedCollection
 implements Collection
{ private final Collection c;
 private int active_iterators = 0;

 private Unsafe active = new Is_active();
 private Unsafe locked = new Is_locked();
 private Unsafe state = active;

 public LockedCollection(Collection c)
 { this.c = c;
 }
 public Iterator iterator()
 { final Iterator wrapped = c.iterator();
 ++active_iterators;
 state = locked;

 return new Iterator()
 { private boolean valid = true;
 //...
 public boolean hasNext()
 { return wrapped.hasNext();
 }
 public Object next()
 { Object next = wrapped.next();
 if(!hasNext())
 { if(--active_iterators == 0)
 state = active;
 valid = false;
 }
 return next;
 }
 };
 }
 public int size()
 { return c.size(); }
 public boolean isEmpty()
 { return c.isEmpty(); }
 // ...
 // Collection methods that don't
 // change behavior are defined here.

 public boolean add(Object o)
 {return state.add(o);}
 public boolean remove(Object o)
 {return state.remove(o);}

 private interface Unsafe
 { public boolean add(Object o);
 public boolean remove(Object o);
 //...
 }
 private final class Is_active
 implements Unsafe
 { public boolean add(Object o)
 {return c.add(o);}
 public boolean remove(Object o)
 {return c.remove(o);}

 //...
 }
 private final class Is_locked
 implements Unsafe
 { public boolean add(Object o)
 { throw new Exception("locked"); }
 public boolean remove(Object o)
 { throw new Exception("locked"); }
 //...
 }
}

This code combines Decorator, Abstract Factory, and
State. It implements a Collection that changes
behavior when iterators are active. “Active,” means
that an iterator has been created, but the last element
of the Collection has not been examined through that
iterator. (Java’s Collection implemenations do just
that, but it makes a good example.) The class tosses an
excemption if you attempt to modify a collection
while iterators are active.

The Unsafe interface defines those Collection
methods that are unsafe to call during iteration. This
interface is implemented by two classes: Is_active
implements normal collection behavior. Is_locked
implements the iterators-are-active behavior. The
classes are Singetons whose instances are referenced
by active and locked. The variable state defines the
current state, and points to one or the other of the
Singletons.

Public methods that don’t change state with
behavior [such as size()] delegate to the contained
Collection, c. Public methods that do change state
[such as add(Object)] delegate to whichever state
object is referenced by state. The iterator()
method forces a change of state to locked when it
issues an iterator. It also increments an active-iterator
count. This count is decremented by the Iterator’s
next() method when it reaches the last element, and
when the count goes to zero, the active state is
activated.

The iterator also changes behavior with state. but
only one method is effected, so the State pattern isn’t
used.

There’s no reason why you can’t create new
objects each time a state transition is made. This way
the individual state object can itself keep local state
information.

 A Catalog of Design Patterns

 49

Strategy
Define an interface that defines a strategy for performing some operation. A family of interchangeable classes,
one for each algorithm, implements the interface.

Strategy: an interface that allows
access to an algorighm.
Concrete Strategy: Implements a
particular algorithm to conform
to the Strategy interface.
Context: Uses the algorithm
through the Strategy interface.

What Problem Does It Solve?
Sometimes, the only difference between subclasses is
the strategy that’s used to perform some common
operation. For example, a frame-window might lay out
its components in various ways, or a protocol handler
might manage sockets in various ways. You can solve
this problem with derivation—several Frame
derivatives would each lay out subcomponents in
different ways, for example. This derivation-based
solution creates a proliferation of classes, however. In
Strategy, you define an interface that encapsulates the
strategy for performing some operation (like layout).
Rather than deriving classes, you pass the “Context”
class the strategy it uses to perform that operation.
Pros () and Cons ()

 Strategy is a good alternative to subclassing. Rather
than deriving a class and overriding a method called
from the base class, you implement a simple interface.

 The strategy object concentrates algorithm-specific
data that’s not needed by the “Context” class in a class
of its own.

 It’s very easy to add new strategies to a system,
with no need to recompile existing classes.

 There’s a small communication overhead. Some of
the arguments passed to the strategy objects might not
be used.
Often Confused With
Command objects are very generic. The invoker of the
command doesn’t have a clue what the command
object does. A Strategy object performs a specific
action.

See Also
Command

Appendix A

50

Implementation Notes and Example
interface Socket_pool
{ Socket allocate(String host, int port)
 void release (Socket s)
}
class Simple_pool implements Socket_pool
{ public Socket allocate(String host,int port)
 { return new Socket(host, port);
 }
 public void release(Socket s)
 { s.close();
 }
};
class Keepalive_pool implements Socket_pool
{ private Map connections = new HashMap();
 public Socket allocate(String host,int port)
 { Socket connection =
 (Socket)connections.get(host+":"+port);
 if(connection == null)
 connection = new Socket(host,port);
 return connection;
 }
 public void release(Socket s)
 { String host =
 s.getInetAddress().getHostName();
 connections.put(host+":"+s.getPort(),s);
 }
 //...
}
class Protocol_handler
{ Socket_pool pool = new Simple_pool();
 public void process(String host, int port)
 { Socket in = pool.allocate(host,port);
 //...
 pool.release(in);
 }
 public void set_pooling_strategy(Socket_pool p)
 { pool = p;
 }
}

The code at left implements a skeleton protocol
handler. Some of the hosts that the handler talks to
require that sockets used for communication are closed
after every message is processed. Other hosts require
that the same socket be used repeatedly. Other hosts
might have other requirements. Because these
requirements are hard to predict, the handler is passed
a socket-pooling strategy.

The default strategy (Simple_pool) simply opens
a socket when asked and closes the socket when the
Protocol_handler releases it.

The Keepalive_pool implements a different
management strategy. If a socket has never been
requested, this second strategy object creates it. When
this new socket is released, instead of closing it, the
strategy object stores it in a Map keyed by combined
host name and port number. The next time a socket is
requested with the same port name and host, the
previously created socket is used. A more realistic
example of this second strategy would probably
implement notions like “aging,” where a socket would
be closed if it hadn’t been used within a certain time
frame.

In the interest of clarity, I’ve left out the
exception handling.

Usage
JFrame frame = new JFrame();
frame.getContentPane().setLayout
 (new FlowLayout());
frame.add(new JLabel("Hello World");

The LayoutManger (FlowLayout) defines a
strategy for laying out the components in a
container (JFrame, the “Context”);

String[] array = new String[]{ ... };
Arrays.sort
(array,
 new Comparator
 { int Compare(Object o1, Object o2)
 { return ((String)o1).compareTo((String)o2);
 }
 }
);

The Arrays.sort(...) method is passed an
array to sort and a Comparator that defines a
strategy for comparing two array elements.
This use of Strategy makes sort(...)
completely generic—it can sort arrays of
anything..

 A Catalog of Design Patterns

 51

Template Method
Define an algorithm at the base-class level. Within the algorithm, call an abstract method to perform operations
that can’t be generalized in the base class. This way you can change the behavior of an algorithm without
changing its structure.

Abstract Class: Defines an algorithm
that uses “primitive” operations that are
supplied by a derived class.
Concrete Class: Implements the
“primitive” operations.

What Problem Does It Solve?
Template method is typically used in derivation-based
application frameworks. The framework provides a set
of base classes that do 90% of the work, deferring
application-specific operations to abstract methods.
You use the framework by deriving classes that
implement this application-specific behavior.
Pros () and Cons ()

 Template method has little to recommend it in most
situations. Strategy, for example, typically provides a
better alternative. Well done class libraries work “out
of the box.” You should be able to instantiate a
framework class and it should do something useful.
Generally, the 90/10 rule applies (10% of the
functionality is used 90% of the time, so that 10%
should be define the default behavior of the class). In
template method, however, the framework defines no
default behavior, but rather, you are required to
provided derived classes for the base class to do
anything useful. Given the 90/10 rule, this means that
you have to do unnecessary work 90% of the time.

Template method does not prohibit the class
designer from providing useful default functionality,
expecting that the programmer will modify the
behavior of the base class through derived-class
overrides. In an OO system, though, using derivation
to modify base-class behavior is just run-of-the-mill
programming, hardly worth glorifying as an official
pattern.

 One reasonable application of Template
Method is to provide empty “hooks” at the base-class
level solely so that a programmer can insert
functionality into the base class via derivation.
Often Confused With
Factory Method is nothing but a Template Method that
creates objects.
See Also
Factory Method.

Appendix A

52

Implementation Notes and Example
class Protocol_handler2
{ public Socket allocate(String host,int port)
 { return new Socket(host, port);
 }
 public void release(Socket s)
 { s.close();
 }

 public void process(String host, int port)
 { Socket in =
 socket_pool.allocate(host,port);
 //...
 socket_pool.release(in);
 }
}

class Keepalive_Protocol_handler
{
 private Map connections = new HashMap();

 public Socket allocate(String host,int port)
 { Socket connection =
 (Socket)connections.get(host+":"+port);
 if(connection == null)
 connection = new Socket(host,port);
 return connection;
 }
 public void release(Socket s)
 { String host=
 s.getInetAddress().getHostName();
 connections.put(host+":"+s.getPort(),s);
 }
}

This example is the example from Strategy rewritten to
sue Template Method. Rather than provide a strategy
object, you derive a class that modifies the base-class
behavior. Put differntly, you modify the behavior of the
protocol-processing algorithm with respect to socket
management.

Usage

class my_Panel extens JPanel
{ public void paint(Graphics g)
 { g.drawString("Hello World", 10, 10);
 }
}

Define painting behavior by overriding the paint(...)
method. You could easily do the same thing by passing
a Panel a “paint” strategy.

 A Catalog of Design Patterns

 53

Visitor
Add operations to a “host” object by providing a way for a visitor—an object that encapsulates an algorithm—
to access the interior state of the host object. Typically, this pattern is used to modify or examine the elements
of a composite structure.

Visitor: Defines an interface that
allows access to a Concrete
Element of an Object Structure.
Various methods can access
elements of different types.
Concrete Visitor: Implements an
operation to be performed on the
Elements. This object can store an
algorithm’s local state.
Element: defines an “accept”
operation that permits a Visitor to
access it.
Concrete Element: Implements the
“accept” operation.
Object Structure: a composite
object that can enumerate its
elements.

What Problem Does It Solve?
SolvedProblem
Pros () and Cons ()

 It’s easy to add operations that you haven’t thought
of.

 Allows the class to be smaller since rarely used
operations can be defined externally.

 Visitors can accumulate state as the visit elements.
A “mobile agent” can visit remote objects (database
servers, for example) and accumulate a composite
result from a distributed database.

 The internal structure of the composite object is
opened up to the visitor, violating encapsulation. For
example, an evil visitor could be passed elements of a
tree and change their “key” values, thereby turning the
tree to garbage. The visitors are tightly coupled to the
object they are visiting.
Often Confused With
Strategy. A Visitor is, in a way, a “visiting strategy.”
The focus of visitor is to visit every node of a data
structure and do something. Strategy is much more
general, and has no connection to a data structure.

See Also
Strategy

Appendix A

54

Implementation Notes and Example
class Directory
{
 public interface Visitor
 { void visit_file(File current, int depth);
 void visit_directory(File current,
 int depth, File[] contents);
 }
 public interface Element
 { void accept(Visitor v, int depth);
 }
 public class Directory_Element
 implements Element
 { private File f;
 public Directory_Element(File f){this.f=f;}
 public void accept(Visitor v, int depth)
 { v.visit_directory(f,depth,f.listFiles());
 }
 }
 public class File_Element implements Element
 { private File f;
 public File_Element(File f){this.f = f;}
 public void accept(Visitor v, int depth)
 { v.visit_file(f, depth);
 }
 }
 //==============================
 private File root;
 public Directory(String root)
 { this.root = new File(root);
 }

 public void traverse(Visitor visitor)
 { top_down(root, visitor, 0);
 }

 private void top_down(File root,
 Visitor visitor, int depth)
 { Element e =
 root.isFile()
 ? (Element)(new File_Element(root))
 : (Element)(new Directory_Element(root))
 ;

 e.accept(visitor, depth);

 if(!root.isFile())
 {
 File[] children = root.listFiles();
 for(int i = 0; i < children.length; ++i)
 top_down(children[i],visitor,depth+1);
 }
 }
}

Print a directory tree like this:

class Printer implements Directory.Visitor
{ public void visit_file(File f, int depth)
 {}
 public void visit_directory(File f,
 int depth, File[] children)
 { while(--depth >= 0)
 System.out.print("..");
 System.out.println(f.getName());
 }
}
Directory d = new Directory("c:/");
d.traverse(new Printer());

The implementation at left is a bit more complex
than it needs to be so that I could demonstrate the
general structure of traversing a heterogeneous
composite object.

The key feature of Visitor is that it provides a
way to add methods to an existing class without
having to recompile that class. To my mind, that
means that the “composite” could legitimately contain
only one element. Consider this class:

class Money
{ long value; // value, scaled by 100
 Money increment(Money addend)
 { value += addend.value;
 return value;
 }
 //...
 public interface Modifier // visitor
 { long modify(long current);
 }
 operate(Modifier v)
 { value = v.modify(value);
 }
}

It’s impractical to define every possible operation
on money, but you can effectively add an operation
by implementing a Visitor (Modifier). Compute the
future value of money like this:
class Future_value impelements Money.Modifier
{ Future_value(float interest,int period)
 {/*...*/}
 public long modify(long current_value)
 { // return future value of current_value
 }
}
Money present_value = new Money(100000.00);
money.operate(new Future_value(.05,24));

