
GoF Design Patterns -
with examples using Java and UML2

written by:

Benneth Christiansson (Ed.)
Mattias Forss,
Ivar Hagen,

Kent Hansson,
Johan Jonasson,
Mattias Jonasson,

Fredrik Lott,
Sara Olsson, and
Thomas Rosevall

Copyright
©2008, Authors.
This work is licensed under a Creative Commons
Attribution-ShareAlike 3.0 License. (This license
allows you to redistribute this book in unmodified
form. It allows you to make and distribute modified
versions, as long as you include an attribution to the
original author, clearly describe the modifications
that you have made, and distribute the modified
work under the same license as the original.

 Logica Java Architects Training Crew Design Patterns- Explained

Table of Contents

Chapter 1 Creational Patterns
Factory, Abstract Factory, Builder, Prototype and Singleton

3
Chapter 2 Structural Patterns

Adapter, Bridge, Composite, Decorator, Facade, Flyweight and Proxy
24

Chapter 3 Behavioral Patterns
Chain-of-responsibility, Command, Iterator, Mediator, Memento, Observer,

State and Strategy

50

Foreword
This book is the result of a joint effort of the authors with an equal
contribution from all. The idea to the book originated during the
participation of a Java Architect training program taught at Logica Sverige
AB Karlstad office. During the course the authors identified the lack of a
quick-guide book to the basic GoF1 design patterns. A book that could be
used as a bare bone reference as well as a learning companion for
understanding design patterns. So we divided the workload and together we
created an up-to-date view of the GoF design patterns in a structured and
uniform manner. Illustrating the choosen patterns with examples in Java and
diagrams using UML2 notation. We have also emphasized benefits and
drawbacks for the individual patterns and, where applicable. We also
illustrate real world usage situations where the pattern has successfully been
implemented.

I personally as editor must express my deepest admiration for the dedication
and effort the authors have shown during this process, everyone who ever
have written a book knows what I mean. I am really proud to be the editor of
this very usable book.

--- Benneth Christiansson, Karlstad, autumn 2008 ---

1 Design Patterns Elements of Reusable Elements by Gamma, Helm, Johnson and Vlissides (1995)

2

 Logica Java Architects Training Crew Design Patterns- Explained

Chapter 1 Creational Patterns

“Creational design patterns are design patterns that deal with object
creation mechanisms, trying to create objects in a manner suitable to the
situation. The basic form of object creation could result in design problems
or added complexity to the design. Creational design patterns solve this
problem by somehow controlling this object creation.”2

All the creational patterns define the best possible way in which an object
can be created considering reuse and changeability. These describes the best
way to handle instantiation. Hard coding the actual instantiation is a pitfall
and should be avoided if reuse and changeability are desired. In such
scenarios, we can make use of patterns to give this a more general and
flexible approach.

2 http://en.wikipedia.org/wiki/Creational_pattern

3

 Logica Java Architects Training Crew Design Patterns- Explained

Factory Pattern

Definition
The Factory pattern provides a way to use an instance as a object factory.
The factory can return an instance of one of several possible classes (in a
subclass hierarchy), depending on the data provided to it.

Where to use
•When a class can't anticipate which kind of class of object it must create.
•You want to localize the knowledge of which class gets created.
•When you have classes that is derived from the same subclasses, or they
may in fact be unrelated classes that just share the same interface. Either
way, the methods in these class instances are the same and can be used
interchangeably.
•When you want to insulate the client from the actual type that is being
instantiated.

Benefits
•The client does not need to know every subclass of objects it must create. It
only need one reference to the abstract class/interface and the factory
object.
•The factory encapsulate the creation of objects. This can be useful if the
creation process is very complex.

Drawbacks/consequences
•There is no way to change an implementing class without a recompile.

4

 Logica Java Architects Training Crew Design Patterns- Explained

Structure

Small example
This example shows how two different concrete Products are created using
the ProductFactory. ProductA uses the superclass writeName method.
ProductB implements writeName that reverses the name.

public abstract class Product {
public void writeName(String name) {
 System.out.println("My name is "+name);

 }
}

public class ProductA extends Product { }

public class ProductB extends Product {
 public void writeName(String name) {
 StringBuilder tempName = new StringBuilder().append(name);
 System.out.println("My reversed name is" +

tempName.reverse());
 }
}

public class ProductFactory {
 Product createProduct(String type) {
 if(type.equals("B"))
 return new ProductB();

 else
 return new ProductA();

 }
}

5

 Logica Java Architects Training Crew Design Patterns- Explained

public class TestClientFactory {
 public static void main(String[] args) {
 ProductFactory pf = new ProductFactory();

 Product prod;
 prod = pf.createProduct("A");
 prod.writeName("John Doe");
 prod = pf.createProduct("B");
 prod.writeName("John Doe");

 }
}

When TestClientFactory is executed the result is:

c:> My name is John Doe
c:> My reversed name is eoD nhoJ

Usage example
The Connection object in the java package sql is a factory.
Depending on the database driver you use you get the database vendors
implementation of the Statement interface. In the following example we
actually get an OracleStatement object from the package oracle.jdbc.driver
when calling createStatement.

6

 Logica Java Architects Training Crew Design Patterns- Explained

import java.sql.*;

public class TestClientFactoryUsage {
 static Connection con;
 static Statement stmt;

 public static void main(String[] args) {
 try {

 Class.forName("oracle.jdbc.driver.OracleDriver");
 con = DriverManager.getConnection("myServer", "user",

 "password");
stmt = con.createStatement();

 } catch(Exception e) {}
 }
}

7

 Logica Java Architects Training Crew Design Patterns- Explained

Abstract Factory Pattern
Definition
The Abstract Factory pattern is a creational pattern which is related to the
Factory Method pattern, but it adds another level of abstraction. What this
means is that the pattern encapsulates a group of individual concrete factory
classes (as opposed to concrete factory methods which are derived in
subclasses) which share common interfaces. The client software uses the
Abstract Factory which provides an interface for creating families of related
or dependent objects without specifying their concrete classes. This pattern
separates the implementation details of a set of objects from its general
usage.

Where to use
The pattern can be used where we need to create sets of objects that share a
common theme and where the client only needs to know how to handle the
abstract equivalence of these objects, i.e. the implementation is not
important for the client. The Abstract Factory is often employed when there
is a need to use different sets of objects and where the objects could be
added or changed some time during the lifetime of an application.

Benefits
Use of this pattern makes it possible to interchange concrete classes without
changing the code that uses them, even at runtime.

Drawbacks/consequences
As with similar design patterns, one of the main drawbacks is the possibility
of unnecessary complexity and extra work in the initial writing of the code.

8

 Logica Java Architects Training Crew Design Patterns- Explained

Structure
Below you see the class diagram of the following small example.

Small example
For instance, we could have an abstract class InsuranceCreator that provides
interfaces to create a number of products (e.g. createCarInsurance(),
createHomeInsurance(), createPersonalInsurance()). Any number of derived
concrete classes of the InsuranceCreator class can be created, for example
CheapInsuranceCreator, ExpensiveInsuranceCreator or ScamInsuranceCreator,
each with a different implementation of createCarInsurance(),
createHomeInsurance() and createPersonalInsurance() that would create a
corresponding object like CheapCarInsurance, ExpensiveHomeInsurance or
ScamPersonalInsurance. Each of these products is derived from a simple
abstract class like CarInsurance, HomeInsurance or PersonalInsurance of
which the client is aware.

9

 Logica Java Architects Training Crew Design Patterns- Explained

The client code would get an appropriate instantiation of the
InsuranceCreator and call its factory methods. Each of the resulting objects
would be created from the same InsuranceCreator implementation and would
share a common theme (they would all be cheap, expensive or scam objects).
The client would need to know how to handle only the abstract CarInsurance,
HomeInsurance or PersonalInsurance class, not the specific version that it got
from the concrete factory.

10

 Logica Java Architects Training Crew Design Patterns- Explained

Builder Pattern

Definition
The Builder pattern can be used to ease the construction of a complex object
from simple objects. The Builder pattern also separates the construction of a
complex object from its representation so that the same construction process
can be used to create another composition of objects.
Related patterns include Abstract Factory and Composite.

Where to use
•When the algorithm for creating a complex object should be independent of
the parts that make up the object and how they are assembled.
•When the construction process must allow different representations for the
object that is constructed.
•When you want to insulate clients from the knowledge of the actual
creation process and/or resulting product.

Benefits
•The built object is shielded from the details of its construction.
•Code for construction is isolated from code for representation and both are
easy to replace without affecting the other.
•Gives you control over the construction process.
•Gives you the possibility to reuse and/or change the process and/or product
independently.

Drawbacks/consequences
Need flexibility in creating various complex objects. Need to create complex,
aggregate objects

11

 Logica Java Architects Training Crew Design Patterns- Explained

Structure

In the class diagram above:
•The Builder specifies an abstract interface for creating parts of a Product.
•The ConcreteBuilder constructs and assembles parts of the product by
implementing the Builder interface.
•The Director constructs an object using the Builder interface.
•The Product represents the object under construction.

Small example
For instance to build a house, we will take several steps:
1. Build floor
2. Build walls
3. Build roof

Let's use an abstract class HouseBuilder to define these three steps. Any
subclass of HouseBuilder will follow these three steps to build house (that is
to say to implement these three methods in the subclass). Then we use a
HouseDirector class to force the order of these three steps (that is to say that
we have to build walls after finished building floor and before building roof).
The HouseClient orders the building of two houses, one wood house and one
brick house. Even though the houses are of different types (wood and brick)
they are built the same way, The construction process allows different
representations for the object that is constructed.

12

 Logica Java Architects Training Crew Design Patterns- Explained

public abstract class HouseBuilder {
protected House house;
protected Floor floor;
protected Walls walls;
protected Roof roof;
public abstract House createHouse();
public abstract Floor createFloor();
public abstract Walls createWalls();
public abstract Roof createRoof();

}

public class WoodBuilder extends HouseBuilder {
public Floor createFloor() {

floor = new WoodFloor();
return floor;

}

public House createHouse() {
house = new WoodHouse();
return house;

}

public Roof createRoof() {
roof = new WoodRoof();
return roof;

}

public Walls createWalls() {
walls = new WoodWalls();
return walls;

}
}

public class BrickBuilder extends HouseBuilder {
//similar to WoodBuilder

}

public class HouseDirector {
public House construcHouse(HouseBuilder builder) {

House house = builder.createHouse();
System.out.println(house.getRepresentation());
house.setFloor(builder.createFloor());
System.out.println(house.getFloor().getRepresentation());
house.setWalls(builder.createWalls());
System.out.println(house.getWalls().getRepresentation());
house.setRoof(builder.createRoof());
System.out.println(house.getRoof().getRepresentation());
return house;

}
}

13

 Logica Java Architects Training Crew Design Patterns- Explained

public abstract class House {
protected Floor floor;
protected Walls walls;
protected Roof roof;

public Floor getFloor() {
return floor;

}

public void setFloor(Floor floor) {
this.floor = floor;

}

public Walls getWalls() {
return walls;

}

public void setWalls(Walls walls) {
this.walls = walls;

}

public Roof getRoof() {
return roof;

}

public void setRoof(Roof roof) {
this.roof = roof;

}

public abstract String getRepresentation();
}

public interface Floor {
public String getRepresentation();

}

public interface Walls {
public String getRepresentation();

}

public interface Roof {
public String getRepresentation();

}

public class WoodHouse extends House {
public String getRepresentation() {

return "Building a wood house";
}

}

public class WoodFloor implements Floor {
public String getRepresentation() {

return "Finished building wood floor";
}

}

14

 Logica Java Architects Training Crew Design Patterns- Explained

public class WoodWalls implements Walls {
 //similar to WoodFloor
}

public class WoodRoof implements Roof {
 //similar to WoodFloor
}

// Similar structure for Brick family
public class BrickHouse extends House …

public class BrickFloor implements Floor …

public class BrickWalls implements Walls …

public class BrickRoof implements Roof …

public class HouseClient {
public static void main(String[] args) {

HouseDirector director = new HouseDirector();
HouseBuilder woodBuilder = new WoodBuilder();
BrickBuilder brickBuilder = new BrickBuilder();
// Build a wooden house
House woodHouse = director.construcHouse(woodBuilder);
System.out.println();
// Build a brick house
House brickHouse = director.construcHouse(brickBuilder);

}
}

When HouseClient is executed the result is:

c:>Building a wood house
c:>Finished building wood floor
c:>Finished building wood walls
c:>Finished building wooden roof
c:>
c:>Building a brick house
c:>Finished building brick floor
c:>Finished building brick walls
c:>Finished building brick roof

Usage example
Some examples of using the Builder pattern in knowledge engineering include
different generators. Parsers in various compilers are also designed using the
Builder pattern.

15

 Logica Java Architects Training Crew Design Patterns- Explained

Prototype Pattern

Definition
The Prototype pattern is basically the creation of new instances through
cloning existing instances. By creating a prototype, new objects are created
by copying this prototype.

Where to use
•When a system needs to be independent of how its objects are created,
composed, and represented.
•When adding and removing objects at runtime.
•When specifying new objects by changing an existing objects structure.
•When configuring an application with classes dynamically.
•When keeping trying to keep the number of classes in a system to a
minimum.
•When state population is an expensive or exclusive process.

Benefits
•Speeds up instantiation of large, dynamically loaded classes.
•Reduced subclassing.

Drawbacks/consequences
Each subclass of Prototype must implement the Clone operation. Could be
difficult with existing classes with internal objects with circular references or
which does not support copying.

16

 Logica Java Architects Training Crew Design Patterns- Explained

Structure

In the class-diagram above:
•Prototype declares an interface for cloning itself.
•ConcretePrototype implements an operation for cloning itself.
•Client creates a new object by asking a prototype to clone itself.

You could use a PrototypeManager to keep track on the different types of
prototypes. The PrototypeManager maintains a list of clone types and their
keys. The client, instead of writing code that invokes the "new" operator on a
hard-wired class name, calls the clone() method on the prototype.

17

 Logica Java Architects Training Crew Design Patterns- Explained

Small example

import java.util.Hashtable;
public class PrototypeExample {
 Hashtable<String, Product> productMap = new Hashtable<String,

Product>();

public Product getProduct(String productCode) {
 Product cachedProduct

=(Product)productMap.get(productCode);
return (Product)cachedProduct.clone();

 }

public void loadCache() {
 //for each product run expensive query and instantiate
 // product productMap.put(productKey, product);
 // for exemplification, we add only two products
 Book b1 = new Book();
 b1.setDescription("Oliver Twist");
 b1.setSKU("B1");
 b1.setNumberOfPages(100);
 productMap.put(b1.getSKU(), b1);
 DVD d1 = new DVD();
 d1.setDescription("Superman");
 d1.setSKU("D1");
 d1.setDuration(180);
 productMap.put(d1.getSKU(), d1);
 }

 public static void main(String[] args) {
 PrototypeExample pe = new PrototypeExample();
 pe.loadCache();
 Book clonedBook = (Book)pe.getProduct("B1");
 System.out.println("SKU = " + clonedBook.getSKU());
 System.out.println("SKU = " +

clonedBook.getDescription());
 System.out.println("SKU = " +

clonedBook.getNumberOfPages());
 DVD clonedDVD = (DVD)pe.getProduct("D1");
 System.out.println("SKU = " + clonedDVD.getSKU());
 System.out.println("SKU = " + clonedDVD.getDescription());
 System.out.println("SKU = " + clonedDVD.getDuration());
 }
}

18

 Logica Java Architects Training Crew Design Patterns- Explained

/** Prototype Class * */
public abstract class Product implements Cloneable {
 private String SKU;
 private String description;

 public Object clone() {
 Object clone = null;
 try {
 clone = super.clone();
 } catch (CloneNotSupportedException e) {
 e.printStackTrace();
 }
 return clone;
 }

 public String getDescription() {
 return description;
 }

 public String getSKU() {
 return SKU;
 }

 public void setDescription(String string) {
 description = string;
 }

 public void setSKU(String string) {
 SKU = string;
 }
}

/** Concrete Prototypes to clone * */
public class Book extends Product {
 private int numberOfPages;

 public int getNumberOfPages() {
 return numberOfPages;
 }

 public void setNumberOfPages(int i) {
 numberOfPages = i;
 }
}

/** Concrete Prototypes to clone * */
public class DVD extends Product {
 private int duration;

 public int getDuration() {
 return duration;
 }

 public void setDuration(int i) {
 duration = i;
 }
}

19

 Logica Java Architects Training Crew Design Patterns- Explained

When PrototypeExample is executed the result is:

c:>SKU = B1
c:>SKU = Oliver Twist
c:>SKU = 100
c:>SKU = D1
c:>SKU = Superman
c:>SKU = 180

Usage example
If you are designing a system for performing bank account transactions, then
you would want to make a copy of the Object which holds your account
information, perform transactions on it, and then replace the original Object
with the modified one. In such cases, you would want to use clone() instead
of new.

20

 Logica Java Architects Training Crew Design Patterns- Explained

Singleton Pattern
Definition
The Singleton pattern provides the possibility to control the number of
instances (mostly one) that are allowed to be made. We also receive a global
point of access to it (them).

Where to use
When only one instance or a specific number of instances of a class are
allowed. Facade objects are often Singletons because only one Facade object
is required.

Benefits
•Controlled access to unique instance.
•Reduced name space.
•Allows refinement of operations and representations.

Drawbacks/consequences
Singleton pattern is also considered an anti-pattern by some people, who feel
that it is overused, introducing unnecessary limitations in situations where a
sole instance of a class is not actually required.

Structure

21

 Logica Java Architects Training Crew Design Patterns- Explained

Small example

package com.logica.singleton;
public class FileLogger {

private static FileLogger logger;

// Prevent clients from using the constructor
private FileLogger() {
}

//Control the accessible (allowed) instances
public static FileLogger getFileLogger() {

if (logger == null) {
logger = new FileLogger();

}
return logger;

}

public synchronized void log(String msg) {
// Write to log file...

}
}

22

 Logica Java Architects Training Crew Design Patterns- Explained

Chapter 2 Structural Patterns
“In software engineering, structural design patterns are design patterns
that ease the design by identifying a simple way to realize relationships
between entities.”3

Structural Patterns describe how objects and classes can be combined to
form structures. We distinguish between object patterns and class patterns.
The difference is that class patterns describe relationships and structures
with the help of inheritance. Object patterns, on other hand, describe how
objects can be associated and aggregated to form larger, more complex
structures.

3 http://en.wikipedia.org/wiki/Structural_pattern

23

 Logica Java Architects Training Crew Design Patterns- Explained

Adapter Pattern
Also known as Wrapper.

Definition
The Adapter pattern is used to translate the interface of one class into
another interface. This means that we can make classes work together that
couldn't otherwise because of incompatible interfaces. A class adapter uses
multiple inheritance (by extending one class and/or implementing one or
more classes) to adapt one interface to another. An object adapter relies on
object aggregation.

Where to use
•When you want to use an existing class, and its interface does not match
the one you need.
•When you want to create a reusable class that cooperates with unrelated or
unforeseen classes, that is, classes that don't necessarily have compatible
interfaces.
•When you want to increase transparency of classes.
•When you want to make a pluggable kit.

Benefits
•Highly class reusable.
•Introduces only one object

Drawbacks/consequences
 When using Java, Target must be an interface.

24

 Logica Java Architects Training Crew Design Patterns- Explained

Structure

In the class-diagram above:
•A Client class expects a certain interface (called the Target interface)
•An available interface doesn't match the Target interface
•An Adapter class bridges the gap between the Target interface and the
available interface
•The available interface is called the Adaptee

Small example
Imagine you need to develop a simple file manager to handle text
documents. There is an existing resource that already handles this, but by
some reason you are forced to a specific interface for your file manager. By
using a class adapter we can use the forced interface and still reuse the
existing functionality. In the class diagram below the interface FileManager is
the target (desired interface). FileManagerUtil is the existing utility class that
we would like to adapt to FileManager interface. We do the actual adaptation
in the class FileManagerImpl, this class uses the desired interface and the
existing functionality through inheritance, i.e. a class adapter.

25

 Logica Java Architects Training Crew Design Patterns- Explained

public interface FileManager {
public String open(String s);
public String close();
public String read(int pos, int amount, byte[] data);
public String write(int pos, int amount, byte[] data);

}

import java.util.*;
import java.io.*;
public class FileManagerUtil {

private RandomAccessFile f;
public boolean openFile(String fileName) {

System.out.println("Opening file: "+fileName);
boolean success=true;
return success;

}

public boolean closeFile() {
System.out.println("Closing file");
boolean success=true;
return success;

}

public boolean writeToFile(String d, long pos, long amount) {

System.out.print("Writing "+amount+
" chars from string: "+d);

System.out.println(" to pos: "+pos+" in file");
boolean success=true;
return success;

}

public String readFromFile(long pos, long amount) {
System.out.print("Reading "+amount+

" chars from pos: "+pos+" in file");
return new String("dynamite");

}
}

26

 Logica Java Architects Training Crew Design Patterns- Explained

public class FileManagerImpl extends FileManagerUtil implements
FileManager {

public String close() {
return new Boolean(closeFile()).toString();

}

public String open(String s) {
return new Boolean(openFile(s)).toString();

}

public String read(int pos, int amount, byte[] data) {
return readFromFile(pos, amount);

}

public String write(int pos, int amount, byte[] data) {
boolean tmp= writeToFile(new String(data), pos, amount);
return String.valueOf(tmp);

}
}

public class FileManagerClient {
public static void main(String[] args) {

FileManager f = null;
String dummyData = "dynamite";
f = new FileManagerImpl();
System.out.println("Using filemanager: "+

f.getClass().toString());
f.open("dummyfile.dat");
f.write(0, dummyData.length(), dummyData.getBytes());
String test = f.read(0,dummyData.length(),

dummyData.getBytes());
System.out.println("Data written and read: "+test);
f.close();

}
}

When FileManagerClient is executed the result is:

c:>Opening file: dummyfile.dat
c:>Writing 8 chars from string: dynamite to pos: 0 in file
c:>Reading 8 chars from pos: 0 in fileData written and read: dynamite
c:>Closing file

Usage example
The Java API uses the Adapter pattern, WindowAdapter, ComponentAdapter,
ContainerAdapter, FocusAdapter, KeyAdapter, MouseAdapter,
MouseMotionAdapter.

27

 Logica Java Architects Training Crew Design Patterns- Explained

Bridge Pattern

Definition
Decouple an abstraction or interface from its implementation so that the two
can vary independently.
Bridge makes a clear-cut between abstraction and implementation.

Where to use
•When you want to separate the abstract structure and its concrete
implementation.
•When you want to share an implementation among multiple objects,
•When you want to reuse existing resources in an 'easy to extend' fashion.
•When you want to hide implementation details from clients. Changes in
implementation should have no impact on clients.

Benefits
Implementation can be selected or switched at run-time. The abstraction and
implementation can be independently extended or composed.

Drawbacks/consequences
Double indirection - In the example, methods are implemented by subclasses
of DrawingAPI class. Shape class must delegate the message to a DrawingAPI
subclass which implements the appropriate method. This will have a slight
impact on performance.

28

 Logica Java Architects Training Crew Design Patterns- Explained

Structure

In the class-diagram above:
•Abstraction defines the abstract interface and maintains the Implementor
reference.
•Refined Abstraction extends the interface defined by Abstraction.
•Implementor defines the interface for implementation classes.
•ConcreteImplementor implements the Implementor interface.

Small example

public class BridgeExample {
 public static void main(String[] args) {
 Shape[] shapes = new Shape[2];
 shapes[0] = new CircleShape(1, 2, 3, new DrawingAPI1());
 shapes[1] = new CircleShape(5, 7, 11, new DrawingAPI2());
 for (Shape shape : shapes) {
 shape.resizeByPercentage(2.5);
 shape.draw();
 }
 }
}

/** "Abstraction" */
public interface Shape {
 public void draw();
 public void resizeByPercentage(double pct);
}

29

 Logica Java Architects Training Crew Design Patterns- Explained

/** "Refined Abstraction" */
public class CircleShape implements Shape {
 private double x, y, radius;
 private DrawingAPI drawingAPI;

 public CircleShape(double x, double y, double radius, DrawingAPI
drawingAPI) {

 this.x = x;
 this.y = y;
 this.radius = radius;
 this.drawingAPI = drawingAPI;
 }

 // Implementation specific
 public void draw() {
 drawingAPI.drawCircle(x, y, radius);
 }

 // Abstraction specific
 public void resizeByPercentage(double pct) {
 radius *= pct;
 }
}

/** "Implementor" */
public interface DrawingAPI {
 public void drawCircle(double x, double y, double radius);
}

/** "ConcreteImplementor" 1/2 */
public class DrawingAPI1 implements DrawingAPI {
 public void drawCircle(double x, double y, double radius) {
 System.out.printf("API1.circle at %f:%f radius %f\n", x, y,

radius);
 }
}

/** "ConcreteImplementor" 2/2 */
public class DrawingAPI2 implements DrawingAPI {
 public void drawCircle(double x, double y, double radius) {
 System.out.printf("API2.circle at %f:%f radius %f\n", x, y,

radius);
 }
}

When BridgeExample is executed the result is:

c:>API1.circle at 1,000000:2,000000 radius 7,5000000
c:>API2.circle at 5,000000:7,000000 radius 27,5000000

Usage example
Bridge pattern can be found in the AWT package. The AWT separates the
general abstraction of GUI components from concrete native implementations
of GUI components.

30

 Logica Java Architects Training Crew Design Patterns- Explained

Composite Pattern

Definition
The Composite pattern helps you to create tree structures of objects without
the need to force clients to differentiate between branches and leaves
regarding usage. The Composite pattern lets clients treat individual objects
and compositions of objects uniformly.

Where to use
•When you want to represent a part-whole relationship in a tree structure.
•When you want clients to be able to ignore the differences between
compositions of objects and individual objects.
•When the structure can have any level of complexity and is dynamic.

Benefits
•Define class hierarchies consisting of primitive objects and composite
objects.
•Makes it easier to add new kind of components.

Drawbacks/consequences
The Composite pattern makes it easy for you to add new kinds of components
to your collection as long as they support a similar programming interface. On
the other hand, this has the disadvantage of making your system overly
general. You might find it harder to restrict certain classes where this would
normally be desirable.

31

 Logica Java Architects Training Crew Design Patterns- Explained

Structure

In the class-diagram above, Component:
•is the abstraction for all components, including composite ones,
•declares the interface for objects in the composition,
•implements default behavior for the interface common to all classes, as
appropriate,
•declares an interface for accessing and managing its child components, and
•(optional) defines an interface for accessing a component's parent in the
recursive structure, and implements it if that's appropriate.

In the class-diagram above, Leaf:
•represents leaf objects in the composition, and
•implements all Component methods.

In the class-diagram above, Composite:
•represents a composite Component (component having children),
•implements methods to manipulate children, and
•implements all Component methods, generally by delegating them to its
children.

32

 Logica Java Architects Training Crew Design Patterns- Explained

Small example

package com.logica.composite;
public interface AbstractFile {

 public void ls();
}

package com.logica.composite;
import java.util.ArrayList;
public class Directory implements AbstractFile {

private String name;
private ArrayList<AbstractFile> files = new

ArrayList<AbstractFile>();
private Indentation indentation;

public Directory (String name, Indentation indentation) {
this.name = name;
this.indentation = indentation;

}

public void add(AbstractFile f) {
files.add(f);

}

public void ls() {
System.out.println(indentation.getIndentation() + name);
indentation.increaseIndentation();
for (AbstractFile file : files) {

file.ls();
}
indentation.decreaseIndentation();

}
}

package com.logica.composite;
class File implements AbstractFile {

private String name;
private Indentation indentation;

public File(String name, Indentation indentation) {
this.name = name;
this.indentation = indentation;

}

public void ls() {
System.out.println(indentation.getIndentation() +
name);

}
}

33

 Logica Java Architects Training Crew Design Patterns- Explained

package com.logica.composite;
public class Indentation {

private StringBuffer sbIndent = new StringBuffer();

public String getIndentation() {
return sbIndent.toString();

}

public void increaseIndentation() {
sbIndent.append(" ");

}

public void decreaseIndentation() {
if (sbIndent.length() >= 3) {

sbIndent.setLength(sbIndent.length() - 3);

}

}
}

package com.logica.composite;
public class CompositeDemo {

 public static void main(String[] args) {
 Indentation indentation = new Indentation();
 Directory dirOne = new Directory("dir111", indentation);
 Directory dirTwo = new Directory("dir222", indentation);
 Directory dirThree = new Directory("dir333",

indentation);
 File a = new File("a", indentation);
 File b = new File("b", indentation);
 File c = new File("c", indentation);
 File d = new File("d", indentation);
 File e = new File("e", indentation);
 dirOne.add(a);
 dirOne.add(dirTwo);
 dirOne.add(b);
 dirTwo.add(c);
 dirTwo.add(d);
 dirTwo.add(dirThree);
 dirThree.add(e);
 dirOne.ls();

 }
}

34

 Logica Java Architects Training Crew Design Patterns- Explained

When BridgeExample is executed the result is:

c:>dir111
c:> a
c:> dir222
c:> c
c:> d
c:> dir333
c:>
c:> e
c:>
c:> b

Below is the class-diagram for the small example.

35

 Logica Java Architects Training Crew Design Patterns- Explained

Decorator Pattern

Definition
The Decorator pattern lets you attach additional responsibilities and modify
an instance functionality dynamically. Decorators provide a flexible
alternative to subclassing for extending functionality, using composition
instead of inheritance.

Where to use
•When you want to add responsibilities to individual objects dynamically and
transparently, without affecting the original object or other objects.
•When you want to add responsibilities to the object that you might want to
change in the future.
•When extension by static subclassing is impractical.

Benefits
•More flexibility than static inheritance.
•Avoids feature-laden classes high up in the hierarchy.
•Simplifies coding because you write a series of classes each targeted at a
specific part of the functionality rather than
•coding all behavior into the object.
•Enhances the object's extensibility because you make changes by coding
new classes.

Drawbacks/consequences
One thing to keep in mind when implementing the Decorator pattern is that
you need to keep the component interface simple. You want to avoid making
the component interface overly complex, because a complex interface will
make it that much harder to get each decorator right.
Another potential drawback of the Decorator pattern is the performance
overhead associated with a long chain of decorators.

36

 Logica Java Architects Training Crew Design Patterns- Explained

Structure

Small example

package com.logica.decorator;
public interface Logger {

public void log(String msg);
}

package com.logica.decorator;
public class LoggerDecorator implements Logger {

Logger logger;

public LoggerDecorator(Logger logger) {
super();
this.logger = logger;

}

public void log(String msg) {
logger.log(msg);

}
}

37

 Logica Java Architects Training Crew Design Patterns- Explained

package com.logica.decorator;
public class ConsoleLogger implements Logger {

public void log(String msg) {
System.out.println("Detta ska skrivas till consolen! "+

msg);
}

}

package com.logica.decorator;
public class EncryptLogger extends LoggerDecorator {

public EncryptLogger(Logger logger) {
super(logger);

}

public void log(String msg) {
msg = encrypt(msg);
logger.log(msg);

}

private String encrypt(String msg) {
msg = msg.substring(msg.length()-1) + msg.substring(0,

msg.length() -1);
return msg;

}
}

package com.logica.decorator;
public class HTMLLogger extends LoggerDecorator {

public HTMLLogger(Logger logger) {
super(logger);

}

public void log(String msg) {
msg = makeHTML(msg);
logger.log(msg);

}

private String makeHTML(String msg) {
msg = "<html><body>" + "" + msg + "" +

"</body></html>";
return msg;

}
}

package com.logica.decorator;
public class LoggerFactory {

public static final String TYPE_CONSOL_LOGGER = "console";
public static final String TYPE_FILE_LOGGER = "file";

public Logger getLogger(String type) {
if(TYPE_CONSOL_LOGGER.equals(type)) {

return new ConsoleLogger();
} else {

return new FileLogger();
}

}
}

38

 Logica Java Architects Training Crew Design Patterns- Explained

package com.logica.decorator;
public class DecoratorClient {

public static void main(String[] args) {
LoggerFactory factory = new LoggerFactory();
Logger logger =

factory.getLogger(LoggerFactory.TYPE_FILE_LOGGER);
HTMLLogger htmlLogger = new HTMLLogger(logger);
htmlLogger.log("A message to log");
EncryptLogger encryptLogger = new EncryptLogger(logger);
encryptLogger.log("A message to log");

}

}

When DecoratorClient is executed the result is:

c:>Detta ska skrivas till en fil! <html><body>A message to
log</body></html>
c:>Detta ska skrivas till en fil! gA message to lo

39

 Logica Java Architects Training Crew Design Patterns- Explained

Facade Pattern

Definition
This design pattern provides a unified interface to a set of interfaces in a
subsystem. It defines a higher-level interface that makes the subsystem
easier to use. A facade is an object that provides a simplified interface to a
larger body of code, such as a class library.

Where to use
The Facade can be used to make a software library easier to use and
understand, since the Facade has convenient methods for common tasks. For
the same reason, it can make code that uses the library more readable. The
pattern can also be used to reduce dependencies of outside code on the
inner workings of a library, since most code uses the Facade it allows more
flexibility when developing the system. A final usage scenario is where we
can wrap several poorly-designed APIs with a single well-designed API.

Benefits
The main benefit with the Facade pattern is that we can combine very
complex method calls and code blocks into a single method that performs a
complex and recurring task. Besides making code easier to use and
understand, it reduces code dependencies between libraries or packages,
making programmers more apt to consideration before writing new code that
exposes the inner workings of a library or a package. Also, since the Facade
makes a weak coupling between the client code and other packages or
libraries it allows us vary the internal components since the client does not
call them directly.

40

 Logica Java Architects Training Crew Design Patterns- Explained

Drawbacks/consequences
One drawback is that we have much less control of what goes on beyond the
surface. Also, if some classes require small variations to the implementation
of Facade methods, we might end up with a mess.

Structure
The class diagram of the small example described in the next section is
shown below to illustrate the structure of the Facade design pattern.

Small example

Consider the graphics above, where the Client classes makes calls to the
BankAccountFacade class. The Facade class uses the classes AccountManager,
SecurityManager, AccountReference and BankAccount to perform the
appropriate actions. By using the Facade pattern we decouple the client
code from the implementation and security details when performing tasks
related to the bank account.

41

 Logica Java Architects Training Crew Design Patterns- Explained

Flyweight Pattern

Definition
Th Flyweight pattern provides a mechanism by which you can avoid creating
a large number of 'expensive' objects and instead reuse existing instances to
represent new ones.

Where to use
•When there is a very large number of objects that may not fit in memory.
•When most of an objects state can be stored on disk or calculated at
runtime.
•When there are groups of objects that share state.
•When the remaining state can be factored into a much smaller number of
objects with shared state.

Benefits
Reduce the number of objects created, decrease memory footprint and
increase performance.

Drawbacks/consequences
Designing objects down to the lowest levels of system "granularity" provides
optimal flexibility, but can be unacceptably expensive in terms of
performance and memory usage.

Structure

42

 Logica Java Architects Training Crew Design Patterns- Explained

Small example
Trying to use objects at very low levels of granularity is nice, but the
overhead may be prohibitive.
public class Gazillion1 {
 private static int num = 0;
 private int row, col;

 public Gazillion1(int maxPerRow) {
 row = num / maxPerRow;
 col = num % maxPerRow;
 num++;
 }

 void report() {
 System.out.print(" " + row + col);
 }
}

public class NoFlyweight {
 public static final int ROWS = 6, COLS = 10;

 public static void main(String[] args) {
 Gazillion1[][] matrix = new Gazillion1[ROWS][COLS];
 for (int i=0; i < ROWS; i++)
 for (int j=0; j < COLS; j++)
 matrix[i][j] = new Gazillion1(COLS);
 for (int i=0; i < ROWS; i++) {
 for (int j=0; j < COLS; j++)
 matrix[i][j].report();
 System.out.println();

 }
 }
}

43

 Logica Java Architects Training Crew Design Patterns- Explained

When NoFlyweight is executed we generate an excessive number of
objects and the resulting output is:

c:> 00 01 02 03 04 05 06 07 08 09
 c:>10 11 12 13 14 15 16 17 18 19
 c:>20 21 22 23 24 25 26 27 28 29
 c:>30 31 32 33 34 35 36 37 38 39
 c:>40 41 42 43 44 45 46 47 48 49
 c:>50 51 52 53 54 55 56 57 58 59

Introducing Flyweight means that we remove the non-shareable state from
the class, and making the client supply it when needed. This places more
responsibility on the client, but, considerably fewer instances of the
Flyweight class are now created. Sharing of these instances is facilitated by
introducing a Factory class that maintains a pool of existing Flyweights with a
reusable state. In the following example, the "row" state is considered
shareable (within each row anyways), and the "col" state has been
externalized (it is supplied by the client when report() is called).

class Gazillion2 {
 private int row;

 public Gazillion2(int theRow) {
 row = theRow;
 System.out.println("Actual ctor: " + row);
 }

 void report(int theCol) {
 System.out.print(" " + row + theCol);
 }
}

class FlyweightFactory {
 private Gazillion2[] pool;

 public FlyweightFactory(int maxRows) {
 pool = new Gazillion2[maxRows];
 }

 public Gazillion2 getFlyweight(int theRow) {
 if (pool[theRow] == null)
 pool[theRow] = new Gazillion2(theRow);
 return pool[theRow];
 }
}

44

 Logica Java Architects Training Crew Design Patterns- Explained

public class Flyweight {
 public static final int ROWS = 6, COLS = 10;

 public static void main(String[] args) {
 FlyweightFactory theFactory = new FlyweightFactory(ROWS);
 for (int i=0; i < ROWS; i++) {
 for (int j=0; j < COLS; j++)
 theFactory.getFlyweight(i).report(j);

 System.out.println();
 }

 }
}

When Flyweight is executed we generate, from a client perspective the same
(excessive) amount of instances but in reality we only generate one instance
per row and reuse that instance several times. This is indicated in the output
below with the text “Actual instance no. x”:

c:>Actual instance no. 0
c:>00 01 02 03 04 05 06 07 08 09
c:>Actual instance no. 1
c:>10 11 12 13 14 15 16 17 18 19
c:>Actual instance no. 2
c:>20 21 22 23 24 25 26 27 28 29
c:>Actual instance no. 3
c:>30 31 32 33 34 35 36 37 38 39
c:>Actual instance no. 4
c:>40 41 42 43 44 45 46 47 48 49
c:>Actual instance no. 5
c:>50 51 52 53 54 55 56 57 58 59

Usage example
The example used in the original GoF book for the flyweight pattern are the
data structures for graphical representation of characters in a word
processor. It would be nice to have, for each character in a document, a
glyph object containing its font outline, font metrics, and other formatting
data, but it would amount to hundreds or thousands of bytes for each
character. Instead, for every character there might be a reference to a
flyweight glyph object shared by every instance of the same character in the
document; only the position of each character (in the document and/or the
page) would need to be stored externally.

Another typical example of usage is the one of folders. The folder with name

45

 Logica Java Architects Training Crew Design Patterns- Explained

of each of the company employee on it, so, the attributes of class Folder
are: “Selected”, “Not Selected” and the third one is “employeeName”. With
this methodology, we will have to create 2000 folder class instances for each
of the employees. This can be costly, so we can create just two class
instances with attributes “selected” and “not selected” and set the
employee's name by a method like:

setNameOnFolder(String name);

This way, the instances of class folder will be shared and you will not have to
create multiple instances for each employee.

46

 Logica Java Architects Training Crew Design Patterns- Explained

Proxy Pattern

Definition
A Proxy is a structural pattern that provides a stand-in for another object in
order to control access to it.

Where to use
•When the creation of one object is relatively expensive it can be a good
idea to replace it with a proxy that can make sure that instantiation of the
expensive object is kept to a minimum.
•Proxy pattern implementation allows for login and authority checking before
one reaches the actual object that's requested.
•Can provide a local representation for an object in a remote location.

Benefits
Gives the ability to control access to an object, whether it's because of a
costly creation process of that object or security issues.

Drawbacks/consequences
Introduces another abstraction level for an object, if some objects accesses
the target object directly and another via the proxy there is a chance that
they get different behavior this may or may not be the intention of the
creator.

47

 Logica Java Architects Training Crew Design Patterns- Explained

Structure

Small example

package cachedLogging;
public interface ICachedLogging {

public void logRequest(String logString);
}

package cachedLogging;
public class CachedLogger implements ICachedLogging {

public void logRequest(String logString) {
System.out.println("CachedLogger logging to some

expensive resource: " + logString + "\n");
}

}

package cachedLogging;
import java.util.ArrayList;
import java.util.List;
public class CachedLoggingProxy implements ICachedLogging {

List<String> cachedLogEntries = new ArrayList<String>();
CachedLogger cachedLogger = new CachedLogger();

public void logRequest(String logString) {
addLogRequest(logString);

}

private void addLogRequest(String logString) {
cachedLogEntries.add(logString);
if(cachedLogEntries.size() >= 4)

performLogging();
}

private void performLogging() {
StringBuffer accumulatedLogString = new StringBuffer();
for (String logString : cachedLogEntries) {

accumulatedLogString.append("\n"+logString);
System.out.println("CachedLoggingProxy: adding

logString \"" +logString + "\" to cached log
entries.");

}
System.out.println("CachedLoggingProxy: sends accumulated

logstring to CachedLogger.");
cachedLogger.logRequest(accumulatedLogString.toString());
cachedLogEntries.clear();
System.out.println("CachedLoggingProxy: cachedLogEntries

cleared.");
}

}

48

 Logica Java Architects Training Crew Design Patterns- Explained

package client;
import cachedLogging.*;
public class Client {

public static void main(String[] args) {
ICachedLogging logger = new CachedLoggingProxy();
for (int i = 1; i < 5; i++) {

logger.logRequest("logString "+i);
}

}
}

When Client is executed the result is:

c:>CachedLoggingProxy: adding logString "logString 1" to cached log entries.
c:>CachedLoggingProxy: adding logString "logString 2" to cached log entries.
c:>CachedLoggingProxy: adding logString "logString 3" to cached log entries.
c:>CachedLoggingProxy: adding logString "logString 4" to cached log entries.
c:>CachedLoggingProxy: sends accumulated logstring to CachedLogger.
c:>CachedLogger logging to some expensive resource:
c:>logString 1
c:>logString 2
c:>logString 3
c:>logString 4
c:>
c:>CachedLoggingProxy: cachedLogEntries cleared.

49

 Logica Java Architects Training Crew Design Patterns- Explained

Behavioral Design Patterns
“In software engineering, behavioral design patterns are design patterns
that identify common communication patterns between objects and realize
these patterns. By doing so, these patterns increase flexibility in carrying
out this communication.”4

Behavioral patterns are patterns that focuses on the interactions between
cooperating objects. The interactions between cooperating objects should be
such that they are communicating while maintaining as loose coupling as
possible. The loose coupling is the key to n-tier architectures. In this, the
implementation and the client should be loosely coupled in order to avoid
hard-coding and dependencies.

4 http://en.wikipedia.org/wiki/Behavioral_patterns

50

 Logica Java Architects Training Crew Design Patterns- Explained

Chain-of-responsibility Pattern
The Chain-of-responsibility pattern lets more than one object handle a
request without mutual knowledge. We avoid coupling between the sender of
a request and the possible receivers. We place all receivers in a chain which
lets the receiving objects pass the request along to the next receiver in the
chain until one receiver handles it, or the end of the chain is reached.

Where to use
•When more than one object may handle a request, and the handler isn't
known.
•When you want to issue a request to one of several objects without
specifying the receiver explicitly.
•When the set of objects that can handle a request should be specified
dynamically.

Benefits
•It reduces coupling.
•It increases the flexibility of handling a request.

Drawbacks/consequences
Reception isn't guaranteed since a request has no explicit receiver, there's no
guarantee it will be handled unless the chain is configured
properly.

51

 Logica Java Architects Training Crew Design Patterns- Explained

Structure

Small example
In the following source code example the ChainDemo is responsible for
creating a chain of Handler instances, and pass 3 requests to them. The
Handlers will randomly decide if and when any of them will handle the
request.

public class Handler {
private static java.util.Random s_rn = new java.util.Random();
private static int s_next = 1;
private int m_id = s_next++;
private Handler m_next;

public void add(Handler next) {
if (m_next == null)

m_next = next;
else

m_next.add(next);
}

public void wrap_around(Handler root) {
if (m_next == null)

m_next = root;
else

m_next.wrap_around(root);
}

public void handle(int num) {
if (s_rn.nextInt(4) != 0) {

System.out.print(m_id + "-busy ");
m_next.handle(num);

}
else

System.out.println(m_id + "-handled-" + num);
}

}

52

 Logica Java Architects Training Crew Design Patterns- Explained

public class ChainDemo {

 public static void main(String[] args) {
 Handler chain_root = new Handler();
 chain_root.add(new Handler());
 chain_root.add(new Handler());
 chain_root.add(new Handler());
 chain_root.wrap_around(chain_root);
 for (int i = 1; i <= 3; i++)
 chain_root.handle(i);
 }
}

When ChainDemo is executed the result is:

c:>1-busy 2-busy 3-handled-1
c:>1-busy 2-busy 3-busy 4-busy 1-busy 2-busy 3-busy 4-busy 1-
busy 2-handled-2
c:>1-handled-3

Usage example
A good example is the creation of an error logging system. By creating
different error-handlers, with differentiating responsibilities and connecting
them in a chain. We can then pass, any potential errors that we want to log
“down the chain” and letting the individual error-handlers handle the error.

53

 Logica Java Architects Training Crew Design Patterns- Explained

Command Pattern

Definition
The Command pattern is used to create objects that represents actions and
events in an application. A command object encapsulates an action or event
and contains all information required to understand exactly what has
happened. By passing the command object as a parameter we can, anywhere
needed extract information about occurred actions and events.

Where to use
• Where you want a action that can be represented in many ways, like drop-
down menu, buttons and popup menu.
• To create undo/redo functionality.

Benefits
• A command object is a possible storage for procedure parameters. It can be
used while assembling the parameters for a function call and allows the
command to be set aside for later use.
• A class is a suitable place to collect code and data related to a specific
action or event.
•It allows the reaction to a command to be executed some time after it has
occurred.
•Command objects enables data structures containing multiple commands.
•Command objects supports undo-able operations, provided that the
command objects are stored (for example in a linked list).

Drawbacks/consequences
The main disadvantage of the Command pattern seems to be a proliferation
of little classes that clutter up the program. However, even in the case
where we have separate click events, we usually call little private methods
to carry out the actual function. It turns out that these private methods are
just about as long as our little classes, so there is frequently little difference

54

 Logica Java Architects Training Crew Design Patterns- Explained

in complexity between building the Command classes and just writing more
methods. The main difference is that the Command pattern produces little
classes that are much more readable.

Structure

Small example

package com.logica.command;
/** Command interface */
public interface Command{
 void execute();
}

package com.logica.command;
/** The Command for turning on the light */
public class TurnOnLightCommand implements Command{

private Light theLight;

public TurnOnLightCommand(Light light){
this.theLight=light;

}

public void execute(){
theLight.turnOn();

}
}

package com.logica.command;
/** The Command for turning off the light */
public class TurnOffLightCommand implements Command{
 private Light theLight;

 public TurnOffLightCommand(Light light){
 this.theLight=light;
 }

 public void execute(){
 theLight.turnOff();
 }
}

55

 Logica Java Architects Training Crew Design Patterns- Explained

package com.logica.command;
/** Receiver class */
public class Light{

public Light(){ }

public void turnOn(){
System.out.println("The light is on");

}

public void turnOff(){
System.out.println("The light is off");

}
}

package com.logica.command;
/** Invoker class*/
public class Switch {

private Command flipUpCommand;
private Command flipDownCommand;

public Switch(Command flipUpCmd,Command flipDownCmd){
this.flipUpCommand=flipUpCmd;
this.flipDownCommand=flipDownCmd;

}

public void flipUp(){
flipUpCommand.execute();

}

public void flipDown(){
flipDownCommand.execute();

}
}

package com.logica.command;
/** Test class */
public class TestCommand{

public static void main(String[] args){
Light l = new Light();
Command switchUp = new TurnOnLightCommand(l);
Command switchDown = new TurnOffLightCommand(l);
Switch s = new Switch(switchUp,switchDown);
s.flipUp();
s.flipDown();

}
}

When executing TestCommand the result is:

c:>The light is on
c:>The light is off

56

 Logica Java Architects Training Crew Design Patterns- Explained

The following class-diagram illustrates the structure for the small example.

57

 Logica Java Architects Training Crew Design Patterns- Explained

Iterator Pattern

Definition
The Iterator design pattern provides a way to access the elements of an
aggregate object sequentially without exposing its underlying
representation.

Where to use
Use to access the elements of an aggregate object sequentially.
Java's collections like ArrayList and HashMap have implemented the iterator
pattern.

Benefits
•The same iterator can be used for different aggregates.
•Allows you to traverse the aggregate in different ways depending on your
needs.
•It encapsulates the internal structure of how the iteration occurs.
•Don't need to bloat the your class with operations for different traversals.

Drawbacks/consequences
Not thread safe unless its a robust iterator that allows insertions and
deletions. This can be be solved by letting the Iterator use a Memento to
capture the state of an iteration.

58

 Logica Java Architects Training Crew Design Patterns- Explained

Structure

Small example
This example shows how you can write your own iterator.

import java.util.*;
public class BitSetIterator implements Iterator<Boolean> {

private final BitSet bitset;
private int index;

public BitSetIterator(BitSet bitset) {
this.bitset = bitset;

}

public boolean hasNext() {
return index < bitset.length();

}

public Boolean next() {
if (index >= bitset.length()) {

throw new NoSuchElementException();
}
boolean b = bitset.get(index++);
return new Boolean(b);

}

public void remove() {
throw new UnsupportedOperationException();

}
}

59

 Logica Java Architects Training Crew Design Patterns- Explained

public class TestClientBitSet {
public static void main(String[] args) {

// create BitSet and set some bits
BitSet bitset = new BitSet();
bitset.set(1);
bitset.set(19);
bitset.set(20);
bitset.set(47);
BitSetIterator iter = new BitSetIterator(bitset);
while (iter.hasNext()) {

Boolean b = iter.next();
String tf = (b.booleanValue() ? "T" : "F");
System.out.print(tf);

}
System.out.println();

}
}

When TestClientBitSet is executed the result is:

c:>FTFFFFFFFFFFFFFFFFFTTFFFFFFFFFFFFFFFFFFFFFFFFFFT

Usage example
This example shows how the Iterator of the ArrayList is used.

import java.util.*;

public class TestClientIterator {

public static void main(String[] args) {
ArrayList<Object> al = new ArrayList<Object>();
al.add(new Integer(42));
al.add(new String("test"));
al.add(new Double("-12.34"));
for(Iterator<Object> iter=al.iterator();

iter.hasNext();)
System.out.println(iter.next());

// JEE5 syntax
for(Object o:al)

System.out.println(o);
}

}

When run the result is:

c:>42
c:>test
c:>-12.34
c:>42
c:>test
c:>-12.34

60

 Logica Java Architects Training Crew Design Patterns- Explained

In the following class-diagram we illustrate the structure from the usage
example.

61

 Logica Java Architects Training Crew Design Patterns- Explained

Mediator Pattern

Definition
With the mediator pattern communication between objects is encapsulated
with a mediator object. Objects no longer communicate directly with each
other, but instead communicate through the mediator. This results in a more
cohesive implementation of the logic and decreased coupling between the
other objects.

Where to use
The Mediator pattern can be used when a set of objects communicate in
well-specified but complex ways and the resulting interdependencies are
unstructured and hard to grasp. If it is difficult to reuse an object because it
refers to and communicates with many other objects this pattern is a good
solution. Communicating objects' identities will be protected when using the
Mediator pattern which is good when security is important. Also, if you like
to customize some behavior which is spread out between several classes
without a lot of subclassing this pattern should be applied. The pattern is
used in many modern systems that reflect a send/receive protocol, such as
list servers and chat rooms. Another area of use is graphical user interfaces,
where the mediator can encapsulate a collective behavior to control and
coordinate the interactions of a group of GUI widgets. The mediator serves
as an intermediary that keeps objects in the group from referring to each
other explicitly. The objects only know the mediator which reduces the
number of interconnections.

62

 Logica Java Architects Training Crew Design Patterns- Explained

Benefits
The Mediator pattern has five benefits and drawbacks:

1. Limited subclassing, since a mediator localizes behavior that otherwise
would be distributed among several objects. Changing some behavior
requires us to subclass only the mediator.

2. Colleagues become decoupled which allows us to vary and reuse colleague
and mediator classes independently.

3. A mediator simplifies object protocols since it replaces many-to-many
interactions with one-to-many interactions between the mediator and its
colleagues. One-to-many interactions are easier to understand, maintain,
and extend.

4. The mediator abstracts object cooperation. The mediator lets you focus
on how objects interact apart from their individual behaviors which can help
clarify how objects interact in a system.

5. Centralized control is achieved by trading complexity of interaction for
complexity in the mediator. A mediator encapsulates protocols and can
become more complex than any individual colleague. This can make the
mediator itself a very complex and large piece of code that is hard to
maintain.

Drawbacks/consequences
Besides the benefits and drawbacks described above, one important
drawback is that the Mediator pattern can have a performance impact on a
system. Since all communication must go through the mediator, it can
become a bottleneck.

63

 Logica Java Architects Training Crew Design Patterns- Explained

Structure

This is the class diagram of the small example that follows below.

Small example
Consider a dialog where there are a display label and three buttons: view,
book and search. When clicking the view button it should be disabled and its
two colleague buttons should be enabled. Also, the display label should
change to reflect which button was pressed. We create four classes
ButtonView, ButtonBook, ButtonSearch and LabelDisplay. Then we let the
button classes implement an interface Command which allows us to execute
the actions of the buttons from a common interface. All of these GUI classes
are unaware of each other; they should only refer to the mediator. We now
create the Mediator class which holds references to all the GUI objects to
control and coordinate the interactions of these objects. Finally, we create
the MediatorExample class to display the components in a frame. The class
implements the ActionListener interface to which all the buttons should
register. The complete source code of this example is shown below:

64

 Logica Java Architects Training Crew Design Patterns- Explained

import java.awt.event.ActionListener;
import javax.swing.JButton;
public class ButtonView extends JButton implements Command {

Mediator mediator;

public ButtonView(ActionListener listener, Mediator mediator){
super("View");
addActionListener(listener);
this.mediator = mediator;
mediator.registerView(this);

}

public void execute() {
mediator.view();

}
}

import java.awt.event.ActionListener;
import javax.swing.JButton;
public class ButtonSearch extends JButton implements Command {

Mediator mediator;

ButtonSearch(ActionListener listener, Mediator mediator{
super("Search");
addActionListener(listener);
this.mediator = mediator;
mediator.registerSearch(this);

}

public void execute() {
mediator.search();

}
}

public interface Command {
public void execute();

}

65

 Logica Java Architects Training Crew Design Patterns- Explained

public class Mediator {
ButtonView buttonView;
ButtonBook buttonBook;
ButtonSearch buttonSearch;
LabelDisplay labelDisplay;

public void registerView(ButtonView buttonView) {
this.buttonView = buttonView;

}

public void registerBook(ButtonBook buttonBook) {
this.buttonBook = buttonBook;

}

public void registerSearch(ButtonSearch buttonSearch) {
this.buttonSearch = buttonSearch;

}

public void registerDisplay(LabelDisplay labelDisplay) {
this.labelDisplay = labelDisplay;

}

public void view() {
buttonView.setEnabled(false);
buttonBook.setEnabled(true);
buttonSearch.setEnabled(true);
labelDisplay.setText("Viewing...");

}

public void book() {
buttonBook.setEnabled(false);
buttonView.setEnabled(true);
buttonSearch.setEnabled(true);
labelDisplay.setText("Booking...");

}

public void search() {
buttonSearch.setEnabled(false);
buttonBook.setEnabled(true);
buttonView.setEnabled(true);
labelDisplay.setText("Searching...");

}
}

66

 Logica Java Architects Training Crew Design Patterns- Explained

import java.awt.BorderLayout;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.awt.event.WindowAdapter;
import java.awt.event.WindowEvent;
import javax.swing.JFrame;
import javax.swing.JPanel;
class MediatorExample extends JFrame implements ActionListener {

Mediator mediator = new Mediator();

public MediatorExample() {
JPanel p = new JPanel();
p.add(new ButtonView(this, mediator));
p.add(new ButtonBook(this, mediator));
p.add(new ButtonSearch(this, mediator));
getContentPane().add(new LabelDisplay(mediator),

BorderLayout.NORTH);
getContentPane().add(p, BorderLayout.SOUTH);
setTitle("Mediator Example");
setSize(300, 200);
addWindowListener(new WindowAdapter() {

public void windowClosing(WindowEvent e) {
System.exit(0);

}
});
setVisible(true);

}

public void actionPerformed(ActionEvent e) {
if (e.getSource() instanceof Command) {

Command c = (Command)e.getSource();
c.execute();

}
}

public static void main(String[] args) {
new MediatorExample();

}
}

When mediatorExample is executed the result is:

67

 Logica Java Architects Training Crew Design Patterns- Explained

Memento Pattern

Definition
To record an object internal state without violating encapsulation and
reclaim it later without knowledge of the original object. A memento is an
object that stores a snapshot of the internal state of another object.

Where to use
•When letting some info in an object be available by another object.
•When you want to create snapshots of a state for an object.
•When you need undo/redo features.

Benefits
Ability to restore an object to its previous state.

Drawbacks/consequences
Care should be taken if the originator may change other objects or resources
- the memento pattern operates on a single object. Using memento to store
large amounts of data from Originator might be expensive if clients create
and return mementos frequently.

68

 Logica Java Architects Training Crew Design Patterns- Explained

Structure

In the class-diagram above:
•An instance from the Originator class is the object that knows how to save
itself. Uses memento to restore itself.
•An instance from the Caretaker class is the object that knows why and when
the Originator needs to save and restore itself. Never operates or examines
the contents of memento
•An instance of the Memento class is the lock box that is written and read by
the Originator, and shepherded by the Caretaker.

The originator is any object that has an internal state, that we want to take
a snapshot of. The caretaker is going to do something to the originators
state, but wants to be able to later restore the originators state. The
caretaker first asks the originator for a memento object, containing the
snapshot. Then it performs the sequence of operations it was going to do. To
roll back to the state before the operations, it returns the memento object
to the originator.

69

 Logica Java Architects Training Crew Design Patterns- Explained

Small example

public class Originator {
 private String state;
 /* lots of memory using private data that does not have to be

saved. Instead we use a small memento object. */

 public void set(String state) {
 System.out.println("Originator: Setting state to " + state);
 this.state = state;
 }

 public Object saveToMemento() {
 System.out.println("Originator: Saving to Memento.");
 return new Memento(state);
 }

 public void restoreFromMemento(Object m) {
 if (m instanceof Memento) {
 Memento memento = (Memento) m;
 state = memento.getSavedState();
 System.out.println("Originator: State after restoring

from Memento: " + state);
 }
 }
}

import java.util.ArrayList;
import java.util.List;

public class Caretaker {
 private List<Object> savedStates = new ArrayList<Object>();

 public void addMemento(Object m) {
 savedStates.add(m);
 }

 public Object getMemento(int index) {
 return savedStates.get(index);
 }
}

public class Memento {
 private String state;

 public Memento(String stateToSave) {
 state = stateToSave;
 }

 public String getSavedState() {
 return state;
 }
}

70

 Logica Java Architects Training Crew Design Patterns- Explained

public class MementoExample {

 public static void main(String[] args) {
 Caretaker caretaker = new Caretaker();
 Originator originator = new Originator();
 originator.set("State1");
 originator.set("State2");
 caretaker.addMemento(originator.saveToMemento());
 originator.set("State3");
 caretaker.addMemento(originator.saveToMemento());
 originator.set("State4");
 originator.restoreFromMemento(caretaker.getMemento(1));
 }
}

When MementoExample is executed the result is:

c:>Originator: Setting state to State1
c:>Originator: Setting state to State2
c:>Originator: Saving to Memento.
c:>Originator: Setting state to State3
c:>Originator: Saving to Memento.
c:>Originator: Setting state to State4
c:>Originator: State after restoring from Memento: State3

Usage example
Often used in database transactions and undo/redo situations.

71

 Logica Java Architects Training Crew Design Patterns- Explained

Observer Pattern
Definition
An observer is a structural pattern that enables publish/subscribe
functionality. This is accomplished by an autonomous object, publisher that
allows other objects to attach or detach their subscription as they like. The
pattern does not impose any limit to the number of observers that can
attach, or subscribe, themselves for notification on future changes in the
publisher's state.

Where to use
When an object wants to publish information and many objects will need to
receive that information.

Benefits
Makes for a loose coupling between publisher and subscriber as the publisher
does not need to know who or how many subscribers there will be.

Drawbacks/consequences
In a complex scenario there may be problems to determining whether the
update to the publisher is of relevance to all subscribers or just some of
them. Sending an update signal to all subscribers might impose a
communication overhead of not needed information.

72

 Logica Java Architects Training Crew Design Patterns- Explained

Structure

Small example

package observer;
public interface IObserver {

void update(String state);
}

package subject;
import observer.IObserver;
public class Observer implements IObserver {

private String state;

public String getState() {
return state;

}

public void setState(String state) {
this.state = state;

}

public void update(String state) {
setState(state);
System.out.println("Observer has received update signal

with new state: " + getState());
}

}

73

 Logica Java Architects Training Crew Design Patterns- Explained

package observer;
public class Observer1 implements IObserver {

private String state;

public String getState() {
return state;

}

public void setState(String state) {
this.state = state;

}

public void update(String state) {
setState(state);
System.out.println("Observer1 has received update signal

with new state: " + getState());
}

}

package observer;
public class Observer2 implements IObserver {

private String state;

public String getState() {
return state;

}

public void setState(String state) {
this.state = state;

}

public void update(String state) {
setState(state);
System.out.println("Observer2 has received update signal

with new state: " + getState());
}

}

74

 Logica Java Architects Training Crew Design Patterns- Explained

package subject;
import java.util.*;
import observer.IObserver;

public class LogSubject {

private List<IObserver> observerList = new
ArrayList<IObserver>();

private String state;

public String getState() {
return state;

}

public void attach(IObserver observer) {
observerList.add(observer);

}

public void detach(IObserver observer) {
observerList.remove(observer);

}

public void setState(String state) {
this.state = state;
stateChanged();

}

private void stateChanged() {
for (IObserver item: observerList) {

item.update(getState());

}

}

}

package observer;
import subject.*;
public class Client {

public static void main(String[] args) {
LogSubject subject = new LogSubject();
IObserver ob = new Observer();
IObserver ob1 = new Observer1();
IObserver ob2 = new Observer2();

subject.attach(ob);
subject.attach(ob1);
subject.attach(ob2);
subject.setState("state1");
subject.setState("state2");
subject.detach(ob1);
subject.setState("state3");

}
}

75

 Logica Java Architects Training Crew Design Patterns- Explained

The following class diagram describes the realtions in the above small
example.

When Client is executed the result is:

c:>Observer has received update signal with new state: state1
c:>Observer1 has received update signal with new state: state1
c:>Observer2 has received update signal with new state: state1
c:>Observer has received update signal with new state: state2
c:>Observer1 has received update signal with new state: state2
c:>Observer2 has received update signal with new state: state2
c:>Observer has received update signal with new state: state3
c:>Observer2 has received update signal with new state: state3

76

 Logica Java Architects Training Crew Design Patterns- Explained

State Pattern

Definition
The State pattern allows an object to alter its behavior when its internal
state changes. By using inheritance and letting subclasses represent different
states and functionality we can switch during runtime. This is a clean way for
an object to partially change its type at runtime.

Where to use
•When we need to define a "context" class to present a single interface to
the outside world. By defining a State abstract base class.
•When we want to represent different "states" of a state machine as derived
classes of the State base class.

Benefits
•Cleaner code when each state is a class instead.
•Use a class to represent a state, not a constant.

Drawbacks/consequences
•Generates a number of small class objects, but in the process, simplifies
and clarifies the program.
•Eliminates the necessity for a set of long, look-alike conditional statements
scattered throughout the code.

77

 Logica Java Architects Training Crew Design Patterns- Explained

Structure

Small example
This example has two states. StateA writes name in lower-case and StateB in
upper-case. We start in state A and then change to state B where we stay for
two calls to writeName before changing back to state A.

78

 Logica Java Architects Training Crew Design Patterns- Explained

public interface State {
 public void writeName(StateContext stateContext, String name);
}

public class StateA implements State {
 public void writeName(StateContext stateContext, String name) {

System.out.println(name.toLowerCase());
stateContext.setState(new StateB());

 }
}

public class StateB implements State {
private int count=0;

public void writeName(StateContext stateContext, String name){
System.out.println(name.toUpperCase());
if(++count>1) {

stateContext.setState(new StateA());
}

}
}

public class StateContext {
private State myState;

public StateContext() {
setState(new StateA());

}

public void setState(State stateName) {
this.myState = stateName;

}

public void writeName(String name) {
this.myState.writeName(this, name);

}
}

public class TestClientState {
public static void main(String[] args) {

StateContext sc = new StateContext();
sc.writeName("Monday");
sc.writeName("Tuesday");
sc.writeName("Wednesday");
sc.writeName("Thursday");
sc.writeName("Saturday");
sc.writeName("Sunday");

}
}

79

 Logica Java Architects Training Crew Design Patterns- Explained

When TestClientState is executed the result is:

c:>monday
c:>TUESDAY
c:>WEDNESDAY
c:>thursday
c:>SATURDAY
c:>SUNDAY

Below is a class-diagram illustrating the structure of the small example.

Usage example
Consider a drawing application with different tools like select, rectangle,
circle, fill and clear. Each one of the tool behaves different when you click or
drag the mouse across the screen. The state of the editor affects the
behavior the program should exhibit. There are some mouse activities which
needs to be handled.

public class DrawState {
public void mouseDown(int x, int y) {}
public void mouseUp(int x, int y) {}
public void mouseDrag(int x, int y) {}

}

Each of the states would implement one or more of these methods
differently.

public class Rectangle extends DrawState {
//create a new Rectangle where mouse clicks
public void mouseDown(int x, int y) {

canvas.addDrawing(new visRectangle(x, y));
}

}

80

 Logica Java Architects Training Crew Design Patterns- Explained

The class-diagram above illustrates the structure of the usage example.

81

 Logica Java Architects Training Crew Design Patterns- Explained

Strategy Pattern

Definition
Use strategy when you need to define a family of algorithms, encapsulate
each one, and make them interchangeable. Strategy lets the algorithm vary
independently from clients that use it. Related patterns include State,
Flyweight, Decorator, Composite.

Where to use
•When you need to use one of several algorithms dynamically.
•When you want to configure a class with one of many related classes
(behaviors).
•When an algorithm uses data that clients shouldn't know about.

Benefits
•Reduces multiple conditional statements in a client.
•Hides complex, algorithmic-specific data from the client.
•Provides an alternative to subclassing.
•Can be used to hide data that an algorithm uses that clients shouldn't know
about.

Drawbacks/consequences
•Clients must be aware of different strategies. A client must understand how
strategies differ before it can select the appropriate one.
•Increases the number of objects in an application.

82

 Logica Java Architects Training Crew Design Patterns- Explained

Structure

In the class-diagram above:
•The Strategy interface defines the behavior that is common to all the
concrete implementations.
•The ConcreteStrategy encapsulates an implementation of a specific
algorithm or behavior that is defined through the Strategy interface.
•The Context provides certain services that is defined by the Strategy
interface and implemented by different ConcreteStrategy classes depending
on behavior.

Small example
This example uses sorting algorithms. Two sorting algorithms (Bubble sort
and Quick sort) are implemented and the client can select either of the
algorithms. The SortInterface describes what the algorithms must be able to
do, sort(). The classes QuickSort and BubbleSort both implements the
SortInterface and each have their own algorithm for sorting. SortingContext
maintains a reference to a Strategy object and forwards client requests to
the strategy. SortingClient set the concrete strategy in the context and
invokes the context to run the algorithm.

83

 Logica Java Architects Training Crew Design Patterns- Explained

public interface SortInterface {
public void sort(double[] list);

}

public class QuickSort implements SortInterface {
public void sort(double[] u) {

sort(u, 0, u.length - 1);
}

private void sort(double[] a, int left, int right) {
if (right <= left) return;
int i = part(a, left, right);
sort(a, left, i-1);
sort(a, i+1, right);

}

private int part(double[] a, int left, int right) {
int i = left;
int j = right;
while (true) {

while (a[i]< a[right])
i++;

while (smaller(a[right], a[--j]))
if (j == left) break;

if (i >= j) break;
swap(a, i, j);

}
swap(a, i, right);
return i;

}

private boolean smaller(double x, double y) {
return (x < y);

}

private void swap(double[] a, int i, int j) {
double swap = a[i]; a[i] = a[j]; a[j] = swap;

}
}

public class BubbleSort implements SortInterface {
public void sort(double[] list) {

//Bubblesort algorithm here
}

}

84

 Logica Java Architects Training Crew Design Patterns- Explained

public class SortingContext {
 private SortInterface sorter = null;

public void sortDouble(double[] list) {
sorter.sort(list);

}

public SortInterface getSorter() {
return sorter;

}

public void setSorter(SortInterface sorter) {
this.sorter = sorter;

}
}

public class SortingClient {
public static void main(String[] args) {

double[] list = {1,2.4,7.9,3.2,1.2,0.2,10.2,
22.5,19.6,14,12,16,17};

SortingContext context = new SortingContext();
context.setSorter(new QuickSort());
context.sortDouble(list);
for(int i =0; i< list.length; i++) {

System.out.println(list[i]);
}

}
}

85

 Logica Java Architects Training Crew Design Patterns- Explained

When SortingClient is executed the result is:

c:>0.2
c:>1.0
c:>1.2
c:>2.4
c:>3.2
c:>7.9
c:>10.2
c:>12.0
c:>14.0
c:>16.0
c:>17.0
c:>19.6
c:>22.5

Usage example
The strategy pattern is used in the implementation of the LayoutManager in
Java. The LayoutManager can be configured to work with different layout
objects, such as FlowLayout, CardLayout, GridLayout, etc. These classes
encapsulate the actual algorithms for laying out visual components that the
LayoutManager uses to render the interface on the screen. By changing the
Layout (algorithm) we can dynamically change how the interface is
rendered.

86

