
__!
MSc in Communications Software 2011!

Design Patterns !
Summer Paper!

Eamonn de Leastar!
__!!!

!!
__!
Instructions:!!
Below are are four short descriptions of problems in specific contexts. Two solutions are
required for each problem - the second an elaboration on the first. Each solution is to be
structured as follows:!!
I. Briefly outline of the relevant design pattern(s) that are viable candidates in the

ensuing answer.!
5 Marks!

II. A solution to Version 1 expressed as a class diagram and with a high level sketch of
the classes involved. Methods in the class can be expressed in any suitable
pseudocode.!

10 Marks!
III. A Solution to Version 2, which may be expressed as modifications to Version 1 with

further classes and pseudocode if necessary.!
10 Marks!

IV. A short summary of the benefits of adopting the selected patterns.!
8 Marks!

! !
Select any three of the problems and propose the outline solutions structured as described
above. All problems are awarded equal marks.!!!!!!
__!
Problem 1: Micro Blogging!!
A new micro blogging service - to be called MessageFeed - is to be designed, with a
particular emphasis on a simplified API for developers. This API is to provide a mechanism
for account signup and log in, message “posting” to specific message identifiers (modeled
on twitter hash tags). One version of this API is to be exposed as a set of Java interfaces,
which should provide the expected functionality.!!
• Version 1: Propose a flexible API to encapsulate the MessageFeed service. The API is to

be expressed as a set of Interfaces, which can be implemented incrementally as the
project advances.!!

• Version 2 : A subscription feature is to be introduced, where by an application can
subscribe to message identifiers. Propose an extension to the API to deliver this feature.!!!!!!!!!

__!
Problem 2: GUI Tree Component!!
A tree component is being designed as part of a new GUI component library, enabling
hierarchical data to be displayed. The component is so support a simplified model/view/
controller approach. Thus, the data is to be provided to the tree component in the form on
a data model object, which the component will access when the tree is to be redrawn.!!
• Version 1: provide a simple example of how this might be realised.!!
• Version 2: in this version, illustrate how data held in pre-designed data structure (not

related to the table model) can be rendered by the component.!!
__!
Problem 3: Trouble Tickets!!
A development team is implementing a desktop application for managing and scheduling
for trouble tickets within a technical support application. Its features include the ability to
create/delete tickets, group related tickets, reorder previously grouped tickets, and
submission of ticket groups to technicians for execution. Technicians then will be tasked
either with individual tickets, or groups of tickets. !!
• Version 1: Propose a simple design for such a system.!!
• Version 2 : A new feature is required, whereby ticket groups can be nested. i.e. a group

of related tickets can be embedded within another group, all allocated to one technician.
Devise an extension to the existing design to support this feature.!!

__!
Problem 4. A, B, C & D.!!
A developer is present with the following problem. Class A has been written to operate with
Class B, with a reference to B provided to A’s constructor. The source for Class A is
“closed”, i.e. it cannot be modified. However, the source for class B is available. Note also
that there are classes C and D in the problem space, which are unrelated to B.!!
• Version 1: Propose a design pattern that would enable class A to interoperate with class

C or D. Use implementation inheritance in the proposal.!!
• Version 2: Propose an alternative configuration whereby B is an interface. What

variation of the design pattern proposed in 1 can now be adopted. Explore the
advantages of this approach.

