
Produced
by

Department of Computing, Maths & Physics

Waterford Institute of Technology
http://www.wit.ie

http://elearning.wit.ie

MSc in Computer Science

Design Patterns

Eamonn de Leastar

edeleastar@wit.ie

mailto:edeleastar@wit.ie

Design Patterns Context

Agile Software Development

Context

�3

Programming Languages
• A programming language is a system of signs used to

communicate a task/algorithm to a computer, causing the
task to be performed

• The task to be performed is called a computation, which
follows absolutely precise and unambiguous rules.

• Three components:

• The syntax of the language is a way of specifying what
is legal in the phrase structure of the language;
(analogous to knowing how to spell and form sentences
English)

• The second component is semantics, or meaning, of a
program in that language.

• Certain idioms that a programmer needs to know to use
the language effectively - are usually acquired through
practice and experience

�4

Family Tree
• Imperative languages:

(Fortran, C, and Ada) enable
programmers to express
algorithms for solving
problems.

• Declarative languages, (Lisp,
Prolog, Haskell) allow the
programmer to specify what
has to be computed, but not
how the computation is done.

• Object Oriented: can be
viewed as a hybrid – of
declarative (class structures) &
imperative (methods) features.

�5

Characteristics of OO Languages

1.Object-based modular structure.

2.Data abstraction.

3.Automatic memory management.

4.Classes.

5.Inheritance.

6.Polymorphism and dynamic binding.

7.Multiple and repeated inheritance.

(Meyer)

�6

Data Structures & Problems

• Typical Data Structures:

• Lists, Stacks, Queues, Trees, Heaps

• Static and Dynamic implementations

• Typical Problem Categories:

• Search

• Decision

• Classification

• Generation & Enumeration

• Aggregation & Clustering

• Sorting

• Traversal �7

Design Patterns
• A design pattern is a proven solution for a general design

problem.

• It consists of communicating ‘objects’ that are customized
to solve the problem in a particular context.

• Patterns have their origin in object-oriented programming
where they began as collections of objects organized to
solve a problem.

• There isn't any fundamental relationship between patterns
and objects; it just happens they began there.

• Patterns may have arisen because objects seem so
elemental, but the problems we were trying to solve with
them were so complex.

�8

Pattern Levels

Architectural Patterns:

• Expresses a fundamental structural organization or schema for software

systems. It provides a set of predefined subsystems, specifies their
responsibilities, and includes rules and guidelines for organizing the
relationships between them.

Design Patterns:

• Provides a scheme for refining the subsystems or components of a

software system, or the relationships between them. It describes
commonly recurring structure of communicating components that solves a
general design problem within a particular context.

Idioms:

• A low-level pattern specific to a programming language. An idiom

describes how to implement particular aspects of components or the
relationships between them using the features of the given language.

�9

Components
• Software components are binary units of:

• independent production,

• acquisition,

• deployment

• that interact to form a functioning program.
(Szyperski)

• Emphasis has on reusable units

• A component must be compatible and interoperate

with a whole range of other components.

• Two main issues arise with respect to interoperability

information:

• How to express interoperability information

• How to publish this information

�10

More Component Definitions

• "A component is a nontrivial, nearly independent, and replaceable part of a
system that fulfills a clear function in the context of a well-defined
architecture. A component conforms to and provides the physical realization
of a set of interfaces." (Philippe Krutchen, Rational Software)

• "A runtime software component is a dynamically bindable package of one or
more programs managed as a unit and accessed through documented
interfaces that can be discovered at runtime." (Gartner Group)

• "A component is a physical and replaceable part of a system that conforms to
and provides the realization of a set of interfaces...typically represents the
physical packaging of otherwise logical elements, such as classes, interfaces,
and collaborations." (Grady Booch, Jim Rumbaugh, Ivar Jacobson, The UML
User Guide, p. 343)

�11

Architecture
• The software architecture of a program or computing

system is:

• the structure or structures of the system, which
comprise software components,

• the externally visible properties of those components,
and

• the a set of rules that govern relationships among
them.

• An architectural style is a family of software architectures,
defining types of components and types of connections,
and rules describing how to combine them.

• A software architecture is an instantiation of an
architectural style for a certain system. The components
and connections may be decomposed into architectures
themselves.

�12

Architectural Styles

• Batch

• Pipe & Filter

• Client/Server

• Blackboard

• Event Driven

• Plug-in

• Space Based (Tuples)

• Three-Tier

�13

• Network

• Data Flow

• Replication

• Hierarchal

• Mobile Code

• Peer to Peer

Frameworks

• A framework is a set of related components which you
specialize, integrate and/or instantiate to implement an
application or subsystem

• Usually, a semi complete application containing dynamic

and static components that can be customized to
produce applications

• Frameworks are targeted for a particular application domain
& consists of a set of classes (abstract & concrete), whose
instances:

• collaborate

• are intended to be extended, i.e. reused (abstract design)

• do not have to address a complete application domain

(allowing for composition of frameworks)

• Emphasize stable parts of the domain and their relationships

and interactions

�14

Framework Structure

�15

Framework Example

�16

Except where otherwise noted, this content is
licensed under a Creative Commons
Attribution-NonCommercial 3.0 License.

!
For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

