
Produced  
by

Department of Computing, Maths & Physics

Waterford Institute of Technology

http://www.wit.ie

http://elearning.wit.ie

Design Patterns

Eamonn de Leastar

edeleastar@wit.ie

mailto:edeleastar@wit.ie


Template Method

Design Pattern



Summary

• Create an abstract class that 
implements a procedure using 
abstract methods. 


• These abstract methods must be 
implemented in derived classes to 
actually perform each step of the 
procedure. 

�3



Intent

• Define the skeleton of an algorithm in an operation, deferring some steps to 
subclasses. 


• Template Method lets subclasses redefine certain steps of an algorithm 
without changing the algorithm's structure.

�4



Motivation (example 1)

• Consider an application framework that provides Application and Document 
classes. 


• The Application class is responsible for opening existing documents 
stored in an external format, such as a file. 


• A Document object represents the information in a document once it's 
read from the file.


• Applications built with the framework can subclass Application and 
Document to suit specific needs. 


• For example, a drawing application defines DrawApplication and 
DrawDocument subclasses; 


• A spreadsheet application defines SpreadsheetApplication and 
SpreadsheetDocument subclasses. 

�5



Motivation (2)

�6



Motivation (3)

• The abstract Application 
class defines the algorithm 
for opening and reading a 
document in its 
openDocument operation


• openDocument defines each 
step for opening a document. 
It checks if the document can 
be opened, creates the 
application-specific 
Document object, adds it to 
its set of documents, and 
reads the Document from a 
file.

�7

class Document	
{	
//...	
  void openDocument(String name)	
  {	
    if (!canOpenDocument(name))	
    { 	
      // cannot handle this document 	
      return; 	
    } 	
    Document doc = doCreateDocument(); 	
    if (doc != null) 	
    { 	
      docs.addDocument(doc); 	
      aboutToOpenDocument(doc);	
      doc.open(); 	
      doc.doRead(); 	
    } 	
  //...	
} 



Motivation (4)

• openDocument() is a template method. 


• A template method defines an algorithm in terms of abstract operations that 
subclasses override to provide concrete behavior. 


• Application subclasses define the steps of the algorithm that check if the 
document can be opened (canOpenDocument) and that create the Document 
(doCreateDocument). Document classes define the step that reads the 
document (doRead). 


• The template method also defines an operation that lets Application 
subclasses know when the document is about to be opened 
(aboutToOpenDocument), in case they care.


• By defining some of the steps of an algorithm using abstract operations, the 
template method fixes their ordering, but it lets Application and Document 
subclasses vary those steps to suit their needs.

�8



Applicability

• To implement the invariant parts of an algorithm once and leave it up to 
subclasses to implement the behaviour that can vary. 


• When common behaviour among subclasses should be factored and 
localized in a common class to avoid code duplication. 


• To control subclasses extensions. Define a template method that calls "hook" 
operations at specific points, thereby permitting extensions only at those 
points.

�9



Structure

�10



Participants

• AbstractClass (Application) 


• defines abstract primitive operations that concrete subclasses define to 
implement steps of an algorithm. 


• implements a template method defining the skeleton of an algorithm. The 
template method calls primitive operations as well as operations defined in 
AbstractClass or those of other objects. 


• ConcreteClass (MyApplication) 


• implements the primitive operations to carry out subclass-specific steps of 
the algorithm. 

�11



Collaborations

• ConcreteClass relies on AbstractClass to implement the invariant steps of the 
algorithm. 

�12



Consequences (1)

• Template Method is used prominently in frameworks.


• The framework implements the invariant pieces of a domain's architecture, 
and defines "placeholders" for all necessary or client customization 
options.


• The framework will then call client code, e.g. primitive operations of a 
template method.


• This inverted control structure has been labeled "the Hollywood principle" 
- "don't call us, we'll call you".

�13



Consequences (2)

• Template methods typically call the following type of methods


• Concrete AbstractClass operations (that are common to all subclasses)


• Primitive operations that must be overridden


• Factory methods (creation of a certain type of object is a variability in the 
template method, implemented as a Factory.


• Hook operations which provide default behavior that the subclasses can 
extend if necessary. Often hook operations do nothing as a default.


• The specialization interface must be described (i.e. inheritance interface). At 
minimum indicate which methods


• Must overridden


• Can be overridden


• Can not be overridden

�14



Example 2

• A familiar example of a framework that is extended using a Template Method 
is Java’s applet. When you create an applet you’re using an application 
framework:


• you inherit from JApplet and then override init( ).


• The applet mechanism (which is a Template Method in this case) does the 
rest by drawing the screen, handling the event loop, resizing, etc.


• An important characteristic of the Template Method is that it is defined in 
the base class and changing it is prohibited, thus it should be declared 
final.


• It calls other base-class methods (the ones you override) in order to do its 
job, but it is usually called only as part of an initialization process (and thus 
the client programmer isn’t necessarily able to call it directly).

�15



UML Pattern Notation

�16



Example 3 
PlainTextDocument & HtmlTextDocument

public class HtmlTextDocument	
{	
  ...	
  public void printPage (Page page) 	
  {	
    printHtmlTextHeader(); 	
    System.out.println(page.body());	
    printHtmlTextFooter(); 	
  }	
  ...	
}

public class PlainTextDocument 	
{	
  ...	
  public void printPage (Page page) 	
  {	
    printPlainTextHeader(); 	
    System.out.println(page.body());	
    printPlainTextFooter(); 	
  }	
  ...	
}



TextDocument superclass
public abstract class TextDocument 	
{	
  ...	
  public final void printPage (Page page) 	
  {	
    printTextHeader();	
    printTextBody(page);	
    printTextFooter();	
  }	
!
  abstract void printTextHeader();	
!
  final void printTextBody(Page page) 	
  {	
    System.out.println(page.body());	
  }	
!
  abstract void printTextFooter();	
  ...	
}

Template Method



PlainTextDocument

public class PlainTextDocument extends TextDocument 	
{	
  ...	
  public void printTextHeader () 	
  {	
    // Code for header plain text header here.	
  }	
  public void printTextFooter () 	
  {	
    // Code for header plain text footer here.	
  }	
	 ...	
}



HTMLTextDocument

public class HTMLTextDocument extends TextDocument 	
{	
  ...	
  public void printTextHeader () 	
  {	
    // Code for header HTML text header here.	
  }	
  public void printTextFooter () 	
  {	
    // Code for header HTML text footer here.	
  }	
	 ...	
}



Except where otherwise noted, this content is 
licensed under a Creative Commons Attribution-
NonCommercial 3.0 License. 

!
For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/


