
Produced
by

Department of Computing, Maths & Physics

Waterford Institute of Technology

http://www.wit.ie

http://elearning.wit.ie

Design Patterns

Eamonn de Leastar

edeleastar@wit.ie

mailto:edeleastar@wit.ie

Strategy

Design Pattern

Summary

• Have the class that uses the algorithm contain a reference to an interface (or
abstract class) that has a method specifying a specific algorithm.

• Each implementation of the interface (or derived class) implements the
algorithm as appropriate.

�3

Intent

• Define an interface that defines a strategy for performing some operation.

• A family of interchangeable classes, one for each algorithm, implements the
interface.

• Also known as: Policy

�4

Motivation (1)

• Many algorithms exist for breaking a stream of text into lines. Hard-wiring all
such algorithms into the classes that require them isn't desirable for several
reasons:

• Clients that need line breaking get more complex if they include the line
breaking code. That makes clients bigger and harder to maintain,
especially if they support multiple line breaking algorithms.

• Different algorithms will be appropriate at different times. We don't want to
support multiple line breaking algorithms if we don't use them all.

• It's difficult to add new algorithms and vary existing ones when line
breaking is an integral part of a client.

• We can avoid these problems by defining classes that encapsulate different
line breaking algorithms. An algorithm that's encapsulated in this way is
called a strategy

�5

Motivation (2)

�6

Motivation (3)
• Composition class is responsible for maintaining and updating the linebreaks

of text displayed in a text viewer. Linebreaking strategies aren't implemented
by the class Composition. Instead, they are implemented separately by
subclasses of the abstract Compositor class. Compositor subclasses
implement different strategies:

• SimpleCompositor implements a simple strategy that determines

linebreaks one at a time.

• TeXCompositor implements the TeX algorithm for finding linebreaks. This

strategy tries to optimize linebreaks globally, that is, one paragraph at a
time.

• ArrayCompositor implements a strategy that selects breaks so that each
row has a fixed number of items. It's useful for breaking a collection of
icons into rows, for example.

• A Composition maintains a reference to a Compositor object. Whenever a
Composition reformats its text, it forwards this responsibility to its
Compositor object. The client of Composition specifies which Compositor
should be used by installing the Compositor it desires into the Composition.

�7

Applicability

• Use the Strategy pattern when

• many related classes differ only in their behavior. Strategies provide a way
to configure a class with one of many behaviors.

• you need different variants of an algorithm. For example, you might define
algorithms reflecting different space/time trade-offs.

• an algorithm uses data that clients shouldn't know about. Use the Strategy
pattern to avoid exposing complex, algorithm-specific data structures.

• A class defines many behaviors, and these appear as multiple conditional
statements in its operations. Instead of many conditionals, move related
conditional branches into their own Strategy class.

�8

Structure

�9

Participants

• Strategy (Compositor)

• declares an interface common to all supported algorithms. Context uses
this interface to call the algorithm defined by a ConcreteStrategy.

• ConcreteStrategy (SimpleCompositor, TeXCompositor, ArrayCompositor)

• implements the algorithm using the Strategy interface.

• Context (Composition)

• is configured with a ConcreteStrategy object.

• maintains a reference to a Strategy object.

�10

Collaborations

• Strategy and Context interact to implement the chosen algorithm. A context
may pass all data required by the algorithm to the strategy when the
algorithm is called. Alternatively, the context can pass itself as an argument to
Strategy operations. That lets the strategy call back on the context as
required.

• A context forwards requests from its clients to its strategy. Clients usually
create and pass a ConcreteStrategy object to the context; thereafter, clients
interact with the context exclusively. There is often a family of
ConcreteStrategy classes for a client to choose from.

�11

Consequences (1)

• Families of related algorithms : Hierarchies of Strategy classes define a family
of algorithms or behaviors for contexts to reuse

• An alternative to subclassing : Encapsulating the algorithm in separate
Strategy classes lets you vary the algorithm independently of its context,
making it easier to switch, understand, and extend.

• Strategies eliminate conditional statements: When different behaviors are
lumped into one class, it's hard to avoid using conditional statements to
select the right behavior. Encapsulating the behavior in separate Strategy
classes eliminates these conditional statements.

• A choice of implementations: Strategies can provide different
implementations of the same behavior. The client can choose among
strategies with different time and space trade-offs.

�12

Consequences (2)

• Clients must be aware of different Strategies: client must understand how
Strategies differ before it can select the appropriate one. Clients might be
exposed to implementation issues. Therefore you should use the Strategy
pattern only when the variation in behavior is relevant to clients

• Communication overhead between Strategy and Context: The Strategy
interface is shared by all ConcreteStrategy classes whether the algorithms
they implement are trivial or complex. Hence it's likely that some
ConcreteStrategies won't use all the information passed to them through this
interface

• Increased number of objects: Strategies increase the number of objects in an
application.

�13

Strategy UML

�14

Strategy vs Template Method

• Both solve the problem of separating a generic algorithm from a detailed
context

• Strategy is like Template Method except in its granularity.

• Template Method uses inheritance to vary parts of an algorithm.

• Strategy uses delegation to vary the entire algorithm.

• Template method ensures that the variable parts are extended coherently.

• Template method, however, leaves code prone to “Fragile Base Class”
problem.

�15

Example

• RowLayout is a strategy the
shell uses to layout
components in a window.

• Alternatives: GridLayout,
FillLayout

�16

public static void main(String[] args) 	
{	
 Display display = new Display();	
 Shell shell = new Shell(display);	
 shell.setLayout(new RowLayout());	
 Label label = new Label(shell, SWT.CENTER);	
 label.setText("It Works");	
 shell.open();	
 while (!shell.isDisposed ()) 	
 {	
 if (!display.readAndDispatch ()) 		 	
 display.sleep ();	
 }	
 display.dispose ();	
}

Except where otherwise noted, this content is
licensed under a Creative Commons Attribution-
NonCommercial 3.0 License.

!
For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

