
Produced
by

Department of Computing, Maths & Physics

Waterford Institute of Technology
http://www.wit.ie

http://elearning.wit.ie

MSc in Communications Software

Design Patterns

Eamonn de Leastar (edeleastar@wit.ie)

mailto:edleastar@wit.ie

Command

Design Pattern

Intent

• Encapsulate a request as an object facilitating:

• parameterize clients with different requests

• queue or log requests

• and support undoable operations.

�3

Motivation(1)
• Be able to issue requests to objects without knowing anything about the

operation (the command) or the receiver:

• user interface toolkits include buttons & menus that carry out a request in
response to user input.

• toolkit can't implement the request explicitly in the button or menu,
because only applications have this knowledge.

• The Command pattern turns the request itself into an object.

• This object can be stored and passed around like other objects.

• The key to this pattern is an abstract Command class, which declares an
interface for executing operations.

• In the simplest form this interface includes an abstract Execute operation.
�4

Motivation(2)

�5

Motivation(3)

• Menus can be implemented with Command objects.

• Each choice in a Menu is an instance of a MenuItem class.

• An Application class creates these menus and their menu items along with

the rest of the user interface.

• The Application class also keeps track of Document objects that a user

has opened.

• The application configures each MenuItem with an instance of a concrete

Command subclass.

• When the user selects a MenuItem, the MenuItem calls Execute on its

command, and Execute carries out the operation.

• MenuItems don't know which subclass of Command they use.

• Command subclasses may store the receiver of the request and invoke

one or more operations on the receiver.

�6

Motivation(4)

• CutCommand supports
cutting text from the
document to the
clipboard

• CutCommand has a
receiver - the Document
object - supplied upon
instantiation.

• The execute operation
invokes cut() on the
receiving Document

�7

Motivation(5)

• OpenCommand’s Execute
operation could be different:

• it prompts the user for a
document name,

• creates a corresponding
Document object,

• adds the document to the
receiving application,

• and opens the document.

�8

Motivation(6)
• A MenuItem may need to execute a

sequence of commands.

• For example, a MenuItem for centering
a page at normal size could be
constructed from a
CenterDocumentCommand object and
a NormalSizeCommand object.

• To facilitate this , we can define a
MacroCommand class to allow a
MenuItem to execute an open-ended
number of commands.

• MacroCommand is a concrete
Command subclass that simply
executes a sequence of Commands.

• MacroCommand has no explicit
receiver, because the commands it
sequences define their own receiver

�9

Motivation(7)

• The Command pattern decouples the object that invokes the operation from
the one having the knowledge to perform it – producing significant flexibility:

• An application can provide both a menu and a push button interface to a
feature just by making the menu and the push button share an instance of
the same concrete Command subclass.

• We can replace commands dynamically, which would be useful for
implementing context-sensitive menus.

• We can also support command scripting by composing commands into
larger ones.

�10

Applicability(1)

• To parameterize objects by an action to perform:

• Parameterization is expressed in a procedural language with a callback
function, that is, a function that's registered somewhere to be called at a
later point.

• Commands are an object-oriented replacement for callbacks.

• Specify, queue, and execute requests at different times:

• A Command object can have a lifetime independent of the original request.

• It may be possible transfer a command object for the request to a different
process and fulfill the request there.

�11

Applicability(2)

�12

• Support undo/redo

• The Command's Execute operation can store state for reversing its
effects in the command itself.

• The Command interface may have an added Unexecute operation
that reverses the effects of a previous call to Execute.

• Executed commands are stored in a history list.

• Undo/redo is achieved by traversing this list backwards and
forwards calling Unexecute and Execute, respectively.

Applicability(3)

• Support logging changes so that they can be reapplied in case of a system
crash.

• By augmenting the Command interface with load and store operations, a

persistent log of changes can be maintained

• Recovering from a crash involves reloading logged commands from disk

and reexecuting them with the Execute operation.

• Structure a system around high-level operations built on primitives

operations.

• Such a structure is common in information systems that support

transactions.

• A transaction encapsulates a set of changes to data. The Command

pattern offers a way to model transactions.

• Commands have a common interface, letting you invoke all transactions

the same way. The pattern also makes it easy to extend the system with
new transactions

�13

Structure

�14

Participants
• Command

• declares an interface for executing an operation.

• ConcreteCommand (PasteCommand, OpenCommand)

• defines a binding between a Receiver object and an action.

• implements Execute by invoking the corresponding operation(s) on

Receiver.

• Client (Application)

• creates a ConcreteCommand object and sets its receiver.

• Invoker (MenuItem)

• asks the command to carry out the request.

• Receiver (Document, Application)

• knows how to perform the operations associated with carrying out a
request. Any class may serve as a Receiver.

�15

Collaborations
• The client creates a ConcreteCommand object and specifies its receiver.

• An Invoker object stores the ConcreteCommand object.

• The invoker issues a request by calling Execute on the command. When

commands are undoable, ConcreteCommand stores state for undoing the
command prior to invoking Execute.

• The ConcreteCommand object invokes operations on its receiver to carry out
the request.

�16

Consequences

• Command decouples the object that invokes the operation from the one that
knows how to perform it.

• Commands are first-class objects. They can be manipulated and extended
like any other object.

• You can assemble commands into a composite command. An example is the
MacroCommand class described earlier. In general, composite commands
are an instance of the Composite pattern.

• It's easy to add new Commands, because you don't have to change existing
classes.

�17

Except where otherwise noted, this content is
licensed under a Creative Commons
Attribution-NonCommercial 3.0 License.

!
For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

