Design Patterns

MSc in Communications Software

Eamonn de Leastar (edeleastar@wit.ie)

Department of Computing, Maths & Physics
Waterford Institute of Technology

http://www.wit.ie

http://elearning.wit.ie

Waterford Institute of Technology o elLearning

cr‘\ o7} INSTITIOID THCNEOLAIOCHTA PHORT LARGE su pport unit

-.V-'_—-a;


mailto:edleastar@wit.ie

Command

Design Pattern



INntent

- Encapsulate a request as an object facilitating:
« parameterize clients with different requests
* queue or log requests

« and support undoable operations.



Motivation(1)

- Be able to issue requests to objects without knowing anything about the
operation (the command) or the receiver:

» user interface toolkits include buttons & menus that carry out a request Iin
response to user input.

» toolkit can't implement the request explicitly in the button or menu,
because only applications have this knowledge.

- The Command pattern turns the request itself into an object.
 This object can be stored and passed around like other objects.

- The key to this pattern is an abstract Command class, which declares an
interface for executing operations.

* In the simplest form this interface includes an abstract Execute operation.



Motivation(2)

Application

add(Document)

Menu

Menultem

add(Menultem)

Document

clicked()p

!
!

!
[}
!
[}
!
]

open()
close()

cut()

copy()
paste()

Command

execute()

command->execute (

)




Motivation(3)

« Menus can be implemented with Command objects.
« Each choice in a Menu is an instance of a Menultem class.

* An Application class creates these menus and their menu items along with
the rest of the user interface.

« The Application class also keeps track of Document objects that a user
has opened.

+ The application configures each Menultem with an instance of a concrete
Command subclass.

« When the user selects a Menultem, the Menultem calls Execute on its
command, and Execute carries out the operation.

- Menultems don't know which subclass of Command they use.

- Command subclasses may store the receiver of the request and invoke
one or more operations on the receiver.



Motivation(4)

« CutCommand supports
cutting text from the
document to the
clipboard

« CutCommand has a
receiver - the Document
object - supplied upon
instantiation.

« The execute operation

doc.cut()

invokes cut() on the

Document

receiving Document

open()
close()
cut()
copy()
paste()

Command

execute()

/\

CutCommand

\\oexecute()

CopyCommand

execute()




Motivation(d)

fleopenDialog.doModak()

application.add(doc);
doc.open();

Command

execute()

doc = new Document (fileOpenDialog,gertFileName());

« OpenCommand’s Execute
operation could be different:| Application

/\

OpenCommand

~0 execute()

Document

add()

it prompts the user for a

document name,

creates a corresponding
Document object,

adds the document to the
receiving application,

and opens the document.

application

doc

open()
close()
cut()

copy()
paste()




Motivation(o)

Command

execute()

commands

/A

MacroCommand

execute() N

for (Command ¢ command)
c.execute();

* A Menultem may need to execute a
sequence of commands.

* For example, a Menultem for centering
a page at normal size could be
constructed from a
CenterDocumentCommand object and
a NormalSizeCommand object.

 To facilitate this , we can define a
MacroCommand class to allow a
Menultem to execute an open-ended
number of commands.

« MacroCommand is a concrete
Command subclass that simply
executes a sequence of Commands.

« MacroCommand has no explicit
receiver, because the commands it

seqguences define their own receiver



Motivation(7)

- The Command pattern decouples the object that invokes the operation from
the one having the knowledge to perform it — producing significant flexibility:

- An application can provide both a menu and a push button interface to a
feature just by making the menu and the push button share an instance of
the same concrete Command subclass.

« We can replace commands dynamically, which would be useful for
iImplementing context-sensitive menus.

» We can also support command scripting by composing commands into
larger ones.

10



Applicability(1)

- To parameterize objects by an action to perform:

- Parameterization is expressed in a procedural language with a callback
function, that is, a function that's registered somewhere to be called at a

later point.

- Commands are an object-oriented replacement for callbacks.

« Specify, queue, and execute requests at different times:

- A Command object can have a lifetime independent of the original request.

* It may be possible transfer a command object for the request to a different
process and fulfill the request there.

11



Applicability(2)

« Support undo/redo

- The Command's Execute operation can store state for reversing its
effects in the command itself.

- The Command interface may have an added Unexecute operation
that reverses the effects of a previous call to Execute.

- Executed commands are stored in a history list.

- Undo/redo is achieved by traversing this list backwards and
forwards calling Unexecute and Execute, respectively.

12



Applicability(3)

« Support logging changes so that they can be reapplied in case of a system
crash.

- By augmenting the Command interface with load and store operations, a
persistent log of changes can be maintained

* Recovering from a crash involves reloading logged commands from disk
and reexecuting them with the Execute operation.

 Structure a system around high-level operations built on primitives
operations.

« Such a structure is common in information systems that support
transactions.

- A transaction encapsulates a set of changes to data. The Command
pattern offers a way to model transactions.

- Commands have a common interface, letting you invoke all transactions
the same way. The pattern also makes it easy to extend the system with
new transactions

13



Structure

Invoker

Client

Receiver

receiver

Command

executq)

A

Action

Concrete-
Command

execute)©=="

receiver.action()

N\

14




Participants

Command

» declares an interface for executing an operation.
ConcreteCommand (PasteCommand, OpenCommand)

- defines a binding between a Receiver object and an action.

- implements Execute by invoking the corresponding operation(s) on
Recelver.

Client (Application)

- creates a ConcreteCommand object and sets its receiver.
Invoker (Menultem)

 asks the command to carry out the request.
Receiver (Document, Application)

« knows how to perform the operations associated with carrying out a
request. Any class may serve as a Receiver.

15



Collaborations

The client creates a ConcreteCommand object and specifies its receiver.
An Invoker object stores the ConcreteCommand object.

The invoker issues a request by calling Execute on the command. When
commands are undoable, ConcreteCommand stores state for undoing the
command prior to invoking Execute.

The ConcreteCommand object invokes operations on its receiver to carry out
the request.

aReceiver aClient aCommand aninvoker

naw Command{aReceiver)

StoreCommand{aCammand)

-

Action() |’

16



Consequences

Command decouples the object that invokes the operation from the one that
knows how to perform it.

Commands are first-class objects. They can be manipulated and extended
like any other object.

You can assemble commands into a composite command. An example is the
MacroCommand class described earlier. In general, composite commands
are an instance of the Composite pattern.

It's easy to add new Commands, because you don't have to change existing
classes.

17



OIS

Except where otherwise noted, this content is
licensed under a Creative Commons
Attribution-NonCommercial 3.0 License.

For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

%/l Waterford Institute of Technology o eLearning

o, INSTITIOID TECNEOLAIOCHTA PHORT LARCE SUppor t unit

"



