
Produced
by

Department of Computing, Maths & Physics

Waterford Institute of Technology
http://www.wit.ie

http://elearning.wit.ie

MSc in Communications Software

Design Patterns

Eamonn de Leastar (edeleastar@wit.ie)

mailto:edleastar@wit.ie

Prototype

Design Pattern

Intent

• Specify the kinds of objects to create using a prototypical instance, and
create new objects by copying this prototype

�3

Motivation
• A CommandDispatcher is pre-

loaded with a set of objects.

• These objects are all of type
Command.

• When a Command is executed,
a copy is to be made and this
copy used for undo/redo
mechanisms.

• The Command contain a copy()
method for this purpose.

• Each Command
implementation will provide its
own implementation, copying
itself on demand.

�4

Applicability

• Use the Prototype pattern when a system should be independent of how its
products are created, composed, and represented; and

• when the classes to instantiate are specified at run-time, for example, by
dynamic loading; or

• to avoid building a class hierarchy of factories that parallels the class
hierarchy of products; or

• when instances of a class can have one of only a few different combinations
of state. It may be more convenient to install a corresponding number of
prototypes and clone them rather than instantiating the class manually, each
time with the appropriate state.

�5

Structure

�6

Participants & Collaborations

• Participants

• Prototype (Command)

• declares an interface for cloning itself.

• ConcretePrototype (Add, Remove etc…)

• implements an operation for cloning itself.

• Client (CommandDispatcher)

• creates a new object by asking a prototype to clone itself.

• Collaborations

• A client asks a prototype to clone itself.

�7

Consequences (1)

• Adding and removing products at run-time.

• Prototypes let you incorporate a new concrete product class into a system
simply by registering a prototypical instance with the client.

• Specifying new objects by varying structure.

• Many applications build objects from parts and subparts.

• Editors for circuit design, for example, build circuits out of subcircuits.

• For convenience, such applications may enable creation of complex
structures via cloning of existing set of pre-configured objects (e.g to use a
specific subcircuit)

�8

Consequences (2)

• Reduced subclassing

• Factory Method often produces a hierarchy of Creator classes that
parallels the product class hierarchy.

• The Prototype pattern lets you clone a prototype instead of asking a
factory method to make a new object.

• Hence you don't need a Creator class hierarchy at all.

�9

Implementation (1)

• Using a prototype manager.

• When the number of prototypes in a system isn't fixed (that is, they can be
created and destroyed dynamically), keep a registry of available
prototypes.

• A client will ask the registry for a prototype before cloning it. We call this
registry a prototype manager.

• A prototype manager is an associative store that returns the prototype
matching a given key.

• It has operations for registering a prototype under a key and for
unregistering it.

• Clients can change or even browse through the registry at run-time. This
lets clients extend and take inventory on the system without writing code.

�10

Implementation (2)

• Implementing the Clone operation.

• The hardest part of the Prototype pattern is implementing the Clone
operation correctly.

• It's particularly tricky when object structures contain circular references.

• Most languages provide some support for cloning objects

• e.g. Java the Cloneable interface .

• "shallow copy versus deep copy" problem - does cloning an object in turn
clone its instance variables, or do the clone and original just share the
variables?

�11

Implementation (3)

• Initializing clones.

• While some clients are perfectly happy with the clone as is, others will
want to initialize some or all of its internal state to values of their choosing.

• You generally can't pass these values in the Clone operation, because
their number will vary between classes of prototypes.

• Some prototypes might need multiple initialization parameters; others
won't need any.

• Passing parameters in the Clone operation precludes a uniform cloning
interface.

�12

Except where otherwise noted, this content is
licensed under a Creative Commons
Attribution-NonCommercial 3.0 License.

!
For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

