Design Patterns

MSc in Communications Software

Eamonn de Leastar (edeleastar@wit.ie)

Department of Computing, Maths & Physics
Waterford Institute of Technology

http://www.wit.ie

http://elearning.wit.ie

Waterford Institute of Technology o elLearning

cr‘\ o7} INSTITIOID THCNEOLAIOCHTA PHORT LARGE su pport unit

-.V-'_—-a;


mailto:edleastar@wit.ie

Prototype

Design Pattern



INntent

- Specify the kinds of objects to create using a prototypical instance, and
create new objects by copying this prototype



Motivation

- A CommandDispatcher is pre-
loaded with a set of objects.

« These objects are all of type
Command.

- When a Command is executed,
a copy is to be made and this
copy used for undo/redo
mechanisms.

- The Command contain a copy()
method for this purpose.

Command-

Dispatcher

Command

Z}AA

Redo

Undo

New

Open

Save

Close

Help

« Each Command

Get

Add

Remove

Find

List

Implementation will provide its
own implementation, copying
itself on demand.




Applicabllity

« Use the Prototype pattern when a system should be independent of how its
products are created, composed, and represented; and

- when the classes to instantiate are specified at run-time, for example, by
dynamic loading; or

» to avoid building a class hierarchy of factories that parallels the class
hierarchy of products; or

« when instances of a class can have one of only a few different combinations
of state. It may be more convenient to install a corresponding number of
prototypes and clone them rather than instantiating the class manually, each
time with the appropriate state.



Structure

Client

operatiorjf
'I
4

4

4
U4
U4
K4

p = protptype->clone ()

Prototype

clong()

[\

Concrete
Prototypel

clone(),o

T4
4
U4
V4

return copy of self

Concrete-
Prototype2

clone()’o

T4
U4
U4
4

return copy of self




Participants & Collaborations

* Participants
 Prototype (Command)
- declares an interface for cloning itself.
« ConcretePrototype (Add, Remove etc...)
* implements an operation for cloning itself.
- Client (CommandDispatcher)
» creates a new object by asking a prototype to clone itself.
» Collaborations

A client asks a prototype to clone itself.



Consequences (1)

- Adding and removing products at run-time.

 Prototypes let you incorporate a nhew concrete product class into a system
simply by registering a prototypical instance with the client.

« Specifying new objects by varying structure.
- Many applications build objects from parts and subparts.
- Editors for circuit design, for example, build circuits out of subcircuits.

« For convenience, such applications may enable creation of complex
structures via cloning of existing set of pre-configured objects (e.g to use a

specific subcircuit)



Consequences (2)

* Reduced subclassing

- Factory Method often produces a hierarchy of Creator classes that
parallels the product class hierarchy.

- The Prototype pattern lets you clone a prototype instead of asking a
factory method to make a new object.

- Hence you don't need a Creator class hierarchy at all.



Implementation (1)

+ Using a prototype manager.

- When the number of prototypes in a system isn't fixed (that is, they can be
created and destroyed dynamically), keep a registry of available
prototypes.

» A client will ask the registry for a prototype before cloning it. We call this
registry a prototype manager.

A prototype manager is an associative store that returns the prototype
matching a given key.

* It has operations for registering a prototype under a key and for
unregistering it.

- Clients can change or even browse through the registry at run-time. This
lets clients extend and take inventory on the system without writing code.

10



Implementation (2)

 Implementing the Clone operation.

- The hardest part of the Prototype pattern is implementing the Clone
operation correctly.

It's particularly tricky when object structures contain circular references.

Most languages provide some support for cloning objects

e.g. Java the Cloneable interface .

"shallow copy versus deep copy" problem - does cloning an object in turn
clone its instance variables, or do the clone and original just share the
variables?

11



Implementation (3)

* Initializing clones.

« While some clients are perfectly happy with the clone as is, others will

want to initialize some or all of its internal state to values of their choosing.

* You generally can't pass these values in the Clone operation, because
their number will vary between classes of prototypes.

« Some prototypes might need multiple initialization parameters; others
won't need any.

- Passing parameters in the Clone operation precludes a uniform cloning
interface.

12



OIS

Except where otherwise noted, this content is
licensed under a Creative Commons
Attribution-NonCommercial 3.0 License.

For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

%/l Waterford Institute of Technology o eLearning

o, INSTITIOID TECNEOLAIOCHTA PHORT LARCE SUppor t unit

"



