
Produced
by

Department of Computing, Maths & Physics

Waterford Institute of Technology
http://www.wit.ie

http://elearning.wit.ie

MSc in Communications Software

Design Patterns

Eamonn de Leastar (edeleastar@wit.ie)

mailto:edleastar@wit.ie

Design Patterns Background

The Origins of Design Patterns

On Vocabulary

�3

Janousek single scull
!

55-60kg
!

Croker blades
!

Carbon Honeycomb
!

J13 Heavyweight Mould
!

Rowfit wing rigger

Patterns
Vocabulary

• Hierarchical MVC UI Design

• Command pattern supporting multi-level undo/redo, incorporating Prototype
based command creation.

• Composite contact list organisation

• Visitor contact search facility

• Strategy report generators
�4

�5

Purpose of Design Pattern

1.Reuse

‣ Reuse elegant, proven and high quality designs across multiple contexts

2.Flexibility

‣ Introduce greater flexibility into the design

3.Documentation

‣ Improving the documentation and maintenance of existing system by
furnishing an explicit specification of class and object interactions and
their intent

�6

Origins

• "Each pattern describes a problem which occurs over and over again in our
environment, and then describes the core of the solution to that problem, in
such a way that you can use this solution a million times over, without ever
doing it the same way twice."

Christopher Alexander, A Pattern Language: Towns/Buildings/Construction,
1977

• A object-oriented design pattern systematically names, explains and
evaluates an important and recurring design in object-oriented systems

�7

Origins

�8

Alexander & Patterns
• Alexander studied the problem of objective quality by making observations of

buildings, towns, streets, gardens, any spaces that human beings have built

‣ He reasoned that high quality constructs had things in common

‣ Architectural structures differed from each other even if they were of the

same type solving the same problem. Yet different solutions were of high
quality.

‣ He understood that structures could not be separated from the problem
they are solving

• He proposed that different structures yielded a high quality solution to similar
problems and extracted the similarity of the structures, the core of the
solution, which he calls a pattern:

‣ solutions to a problem in a context

‣ 253 patterns covering regions, towns, transportations, homes offices,

rooms, lighthing, gardens, ...

‣ each pattern defines subproblems solved by other smaller patterns

�9

Patterns in Software Design

�10

GoF

• The landmark book on software design
patterns is:

 Design Patterns: Elements of Reusable

 Object-Oriented Software

 Erich Gamma, Richard Helm,

 Ralph Johnson, John Vlissides

 Addison-Wesley, 1995

• This is also known as the GOF (“Gang-
of-Four”) book.

• Design Patterns help you break out of
first-generation (naive) OO thought
patterns

�11

Regularly Appears in top-10 programming lists

�12

Pattern Definition

• Each design pattern systematically:

‣ Names

‣ Explains

‣ Evaluates

an important and recurring design in object-oriented systems.

• Patterns capture this design experience in a form that can be effectively
communicated.

• Often presented as a catalogue.

�13

To What End?

• Make it easier to reuse successful designs and architectures.

• Express proven techniques making them accessible to developers of new
systems.

• Help developers choose appropriate design alternatives that make a system
reusable and avoid options that compromise reusability.

• Improve the documentation and maintenance of existing systems by
furnishing an explicit specification of class and object interactions and their
underlying intent.

�14

Design Pattern Characteristics

• Design patterns represent solutions to problems that arise when developing
software within a particular context

‣ Patterns = Problem/Solution pair in Context

• Capture static and dynamic structure and collaboration among key
participants in software designs

‣ key participants – an abstraction that occurs in a design problem

‣ useful for articulating the how and why to solve non-functional forces.

• Facilitate reuse of successful software architectures and design

�15

Documenting Patterns

• GoF used a standard procedure to describe and document design patterns.

‣ Increases understandability.

‣ Many books have adopted the similar approach.

• By documenting the design pattern, knowledge becomes explicit, instead of
in the designer’s head.

‣ Patterns are often presented as pattern catalogues

‣ Important they are presented in a systematic form as a semi- formal
document.

�16

GoF Pattern Format
• Pattern Name and Classification

‣ The pattern's name conveys the essence of the pattern succinctly. A good name is vital,
because it will become part of your design vocabulary. The pattern's classification
reflects a specific scheme (Creational, Behavioural, Structural).

• Intent

‣ A short statement that answers the following questions: What does the design pattern

do? What is its rationale and intent? What particular design issue or problem does it
address?

• Also Known As

‣ Other well-known names for the pattern, if any.

• Motivation

‣ A scenario that illustrates a design problem and how the class and object structures in

the pattern solve the problem. The scenario will help you understand the more abstract
description of the pattern that follows.

• Applicability

‣ What are the situations in which the design pattern can be applied? What are examples

of poor designs that the pattern can address? How can you recognize these situations?

• Structure

‣ A graphical representation of the classes in the pattern using UML. Usually class
diagrams and interaction diagrams.

�17

GoF Pattern Format
• Participants

‣ The classes and/or objects participating in the design pattern and their responsibilities.

• Collaborations

‣ How the participants collaborate to carry out their responsibilities.

• Consequences

‣ How does the pattern support its objectives? What are the trade-offs and results of
using the pattern? What aspect of system structure does it let you vary independently?

• Implementation

‣ What pitfalls, hints, or techniques should you be aware of when implementing the

pattern? Are there language-specific issues?

• Sample Code

‣ Code fragments

• Known Uses

‣ Examples of the pattern found in real systems. We include at least two examples from
different domains.

• Related Patterns

‣ What design patterns are closely related to this one? What are the important

differences? With which other patterns should this one be used?

�18

Catalogues

�19

Except where otherwise noted, this content is
licensed under a Creative Commons
Attribution-NonCommercial 3.0 License.

!
For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

