
Produced
by

Department of Computing, Maths & Physics

Waterford Institute of Technology
http://www.wit.ie

http://elearning.wit.ie

MSc in Communications Software

Design Patterns

Eamonn de Leastar (edeleastar@wit.ie)

mailto:edleastar@wit.ie

Design Patterns Principles

The thinking behind patterns

Five Important Principles

1.Distinguish between Classes & Types

2.Distinguish between interface & implementation inheritance
(implements & extends)

3.Program to Interface not Implementation

4.Favour Composition over Inheritance

5.Find what varies & encapsulate it

�3

(1) Classes & Types

• A Class defines how the object is
implemented.

‣ It defines the object's internal state
and the implementation of its
operations.

• A Type only refers to its interface

‣ the set of requests to which it can
respond.

• An object can have many types, and
objects of different classes can have the
same type.

�4

(2) Interface & Implementation

• Languages like C++ and Eiffel use classes to specify both an object's type
and its implementation

• Java can separate these:

‣ Interface for type

‣ Class for class

• Key distinction between interface inheritance and implementation inheritance:

‣ implements: Interface inheritance describes when an object can be used in
place of another. – Reducing dependencies, reusability, adaptability

‣ extends: Implementation inheritance defines an object's implementation in
terms of another object's implementation – Localization & Reuse of code

�5

(3) Programming to Interfaces

• Use interfaces to define types

• Declare object references to be associated with the types (instead of the
classes implementing the types)

• Use Creational patterns

‣ to associate interfaces with implementations

‣ protects the package responsible for creating concrete objects from
depending on specific concrete classes

• Benefits

‣ Greatly reduces the implementation dependencies

‣ Client objects remain unaware of the classes that implement the objects
they use.

‣ Clients know only about the types (interfaces).

�6

(4) Inheritance vs Composition (1)

• Two common techniques for reusing
functionality:

‣ White-box reuse: Class inheritance -
defines the implementation of one class
in terms of another. The internals of
parent classes are visible to subclasses.

‣ Black-box reuse: Object Composition -
functionality is obtained by assembling
or composing objects to get more
complex functionality. Requires that the
objects being composed have well-
defined interfaces.

�7

(4) Inheritance vs. Composition (2)

• Class Inheritance

‣ easy to use 	 ⇒ easy to modify, implementation being reused

‣ change in parent 	 ⇒ change in subclass, breaks encapsulation

‣ change in subclass 	 ⇒ change in inherited parent behaviour

• Object Composition

‣ objects are accessed solely through interfaces

‣ no break of encapsulation

‣ any object can be replaced by another at runtime as long as they are the
same type

�8

(4) Inheritance vs. Composition (3)

• Keeps classes focused on one task – high cohesion

• Implies having more objects, with the system’s behaviour captured in their
interactions

• Potential for reuse increases

�9

(5) Encapsulate the concept that varies

• Patterns typically attempt to locate the axis of change within a set of
abstractions

• … and encapsulate that axis.

• E.g: Command pattern:

‣ the variability is when & how a request is to be fulfilled.

‣ These commands are encapsulated as first class objects

‣ … and can be passed, stored, retrieved and interrogated

• E.g. Strategy

‣ Identify the variability in a given algorithm (widget layout algorithm)

‣ .. Encapsulate this in an interface (LayoutManager)

‣ Realise alternatives as implementations of this interface

‣ Recompose the algorithm in terms of this interface.

�10

Except where otherwise noted, this content is
licensed under a Creative Commons
Attribution-NonCommercial 3.0 License.

!
For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

