
Produced
by

Department of Computing, Maths & Physics

Waterford Institute of Technology
http://www.wit.ie

http://elearning.wit.ie

MSc in Communications Software

Design Patterns

Eamonn de Leastar (edeleastar@wit.ie)

mailto:edleastar@wit.ie

Adapter

Design Pattern

Intent

• Convert the interface of a class into another interface clients expect.

• Adapter lets classes work together that couldn't otherwise because of
incompatible interfaces.

• Also known as Wrapper

�3

 static boolean linearSearch (Iterator it, Object searchItem)	
 {	
 while (it.hasNext())	
 {	
 if (it.next().equals(searchItem))	
 {	
 return true;	
 }	
 }	
 return false;	
 }

Motivation (1)
• An Algorithm is

designed to search
an in-memory data
structure via an
Iterator object.

• This can search any
collection that
exposes an iterator
interface:

�4

ArrayList arrayList = new ArrayList();	
 	
Object searchObject = // Some object to search for	
boolean found = linearSearch(arrayList.iterator(), searchObject);

found = linearSearch (objectStream, searchObject);

Motivation (2)

• We would like to use the same linear search method to search a
stream of objects stored in a file on disk.

�5

• objectStream is not an Iterator, nor does it support Iterators…

• … so we introduce a new class – ObjectIterator – which “adapts” and
ObjectStream to support Iterator interface:

ObjectIterator objIterator = new ObjectIterator (new FileInputStream("t.ser"));

ObjectInputStream objectStream = new ObjectInputStream (new FileInputStream("t.ser"));

found = linearSearch (objIterator, searchObject);

• The original linearSearch() can now directly access the object stream
on disk – via the adapter.

!
class ObjectIterator extends ObjectInputStream implements Iterator	
{	
 private boolean at_end_of_file = false;	
!
 public ObjectIterator(InputStream src) throws IOException	
 {	
 super(src);	
 }	
!
 public boolean hasNext()	
 {	
 return at_end_of_file == false;	
 }	
!
 public Object next()	
 {	
 try	
 {	
 return readObject();	
 }	
 catch (Exception e)	
 {	
 at_end_of_file = true;	
 return null;	
 }	
 }	
!
 public void remove()	
 {	
 throw new UnsupportedOperationException();	
 }	
}

ObjectIterator
Adapter Class

�6

Motivation (3)
• ObjectIterator is a “Class” Adapter that adapts an ObjectInputStream to

implement the Iterator interface.

• Existing methods that examine a set of objects by using an Iterator can now
examine objects directly from a file.

• i.e. the method doesn’t know or care whether it’s reading from a file or
traversing a Collection of some sort,

• Useful when implementing an Object cache that can overflow to disk, for
example.

• i.e. don’t need to write two versions of the object-reader method, one for
files and one for collections.

�7

class WrappedObjectIterator implements Iterator	
{	
 private boolean at_end_of_file = false;	
 private final ObjectInputStream in;	
!
 public WrappedObjectIterator(ObjectInputStream in)	
 {	
 this.in = in;	
 }	
!
 public boolean hasNext()	
 {	
 return at_end_of_file == false;	
 }	
!
 public Object next()	
 {	
 try	
 {	
 return in.readObject();	
 }	
 catch (Exception e)	
 {	
 at_end_of_file = true;	
 return null;	
 }	
 }	
!
 public void remove()	
 {	
 throw new UnsupportedOperationException();	
 }	
}

Wrapped adapter
class

�8

Motivation (4)

• WrappedObjectIterator is an “Object” Adapter version of ObjectIterator that
uses containment rather than inheritance.

• The “Class” Adapter, since it is an ObjectInputStream that implements
Iterator, can be used by any method that knows how to an use either
ObjectInputStream or Iterator.

• The “Object” Adapter, since it encapsulates the input stream, cannot be
used as an ObjectInputStream, but you can use the input stream for a
while, temporarily wrap it in a WrappedObjectIterator to extract a few
objects, then pull the input stream out again.

�9

Applicability

• When you want to use an existing class, and its interface does not match
the one you need.

• When you want to create a reusable class that cooperates with unrelated or
unforeseen classes, that is, classes that don't necessarily have compatible
interfaces.

• (object adapter only) you need to use several existing subclasses, but it's
impractical to adapt their interface by subclassing every one. An object
adapter can adapt the interface of its parent class

�10

Structure : Class Adapter

�11

Structure: Object Adapter

�12

Participants

• Target (Iterator)

• defines the domain-specific interface that Client uses.

• Client (linearSearch)

• collaborates with objects conforming to the Target interface.

• Adaptee (ObjectInputStream)

• defines an existing interface that needs adapting.

• Adapter (ObjectIterator)

• adapts the interface of Adaptee to the Target interface.

�13

Collaborations

• Clients call operations on an Adapter instance.

• In turn, the adapter calls Adaptee operations that carry out the request.

�14

Consequences: Class Adapter

• Adapts Adaptee to Target by committing to a concrete Adaptee class.

• As a consequence, a class adapter won't work when we want to adapt
a class and all its subclasses.

• Lets Adapter override some of Adaptee's behavior, since Adapter is a
subclass of Adaptee.

• Introduces only one object, and no additional pointer indirection is
needed to get to the adaptee

�15

Consequences: Object Adapter

• Lets a single Adapter work with many Adaptees—that is, the Adaptee
itself and all of its subclasses (if any).

• The Adapter can also add functionality to all Adaptees at once.

• Makes it harder to override Adaptee behavior.

• It will require subclassing Adaptee and making Adapter refer to the
subclass rather than the Adaptee itself.

�16

Except where otherwise noted, this content is
licensed under a Creative Commons
Attribution-NonCommercial 3.0 License.

!
For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

