
Produced
by

Department of Computing, Maths & Physics

Waterford Institute of Technology
http://www.wit.ie

http://elearning.wit.ie

MSc in Communications Software

Design Patterns

Eamonn de Leastar (edeleastar@wit.ie)

mailto:edleastar@wit.ie

Patterns for Graphic User Interface / Rich Client
Development

Sources & Context

Source: GoF

• So far - patterns have been part of the
‘Classical’ GoF reference.

• Canonical form - much referenced.

• Has had a strong influence on Java and
on the JDK.

• “First generation” approach to GUIs

�3

Source: PoEAA:
Patterns of Enterprise Application Development

• Catalogue of patterns for “Enterprise”
development.

• Topics

• how to layer an enterprise application

• how to organize domain logic

• how to tie that logic to a relational
database,

• how to design a web based
presentation

• http://martinfowler.com/

�4

http://martinfowler.com

Eaa Work in
Progress

• A web-only
resource continuing
to document further
“enterprise”
patterns.

• Considers GUI
development
patterns not
discussed in P of
Eaa text.

�5

Graphical User Interfaces 	

• GUIs - often called Rich Clients - can be
notoriously complex.

• Inherent complexity: the GUI component
set is at varying levels of abstraction with
sophisticated event mechanisms:

‣ Controls

‣ Containers

‣ Windows

‣ Menus

• Accidental complexity: domain logic can
easily become hopelessly intermingled
with the GUI specific logic.

�6

GUI Events

• A significant source of complexity

• Toolkit handles fine-grained events

‣ Mouse entered, exited

‣ Mouse pressed

‣ Radio button pressed, armed, rollover

• Application handles coarse-grained events:

‣ Radio button selected

‣ Action performed

‣ Domain property changed

‣ Managing the flow of these events requires careful consideration if design
coherence is to be preserved.

�7

Patterns
• GoF Patterns weak in this area - tend to be too fine grained.

• One “Composed Pattern” is discussed:

‣ Model View Controller

• Eaa Work in Progress (http://martinfowler.com/eaaDev/)

‣ Notification

‣ Supervising Controller

‣ Passive View

‣ Presentation Model

‣ Event Aggregator

‣ Window Driver

‣ Flow Synchronization

‣ Observer Synchronization

‣ Presentation Chooser

‣ Autonomous View

‣ Model View Presenter

�8

In particular, read
http://martinfowler.com/eaaDev/uiArchs.html

for background to these patterns

http://martinfowler.com/eaaDev/
http://martinfowler.com/eaaDev/uiArchs.html

Selected Patterns

• Reasonable subset of fowler:

‣ Separated Presentation

‣ Flow Synchronization

‣ Observer Synchronization

‣ Passive View

‣ Supervising Controller/Presenter

‣ Model View Presenter

‣ + review Model View Controller in this context

�9

Separated Presentation

• A form of layering where presentation code and domain code in separate
layers with the domain code unaware of presentation code.

‣ Review all the data and behavior in a system identifying code involved in
the presentation. Presentation code would manipulate GUI widgets and
structures only.

‣ We then divide the application into two logical modules with all the
presentation code in one module and the rest in another module.

• The layers are a logical and not a physical construct. Java packages are a
useful separation mechanism

�10

Separated Presentation -
Dependencies
• Apply a strict visibility rule. The

presentation is able to call the domain
but not vice-versa.

• This can be checked as part of a
build with dependency checking
tools. (Structure101)

• The domain should be utterly unaware
of what presentations may be used
with it.

• This both helps keep the concerns
separate and also supports using
multiple presentations with the same
domain code.

�11

Separated Presentation - UI Independent

• A good mental test to use to check you are using Separated Presentation is
to imagine a completely different user interface.

‣ If you are writing a GUI imagine writing a command line interface for the
same application.

‣ Ask yourself if anything would be duplicated between the GUI and
command line presentation code - if it is then it's a good candidate for
moving to the domain

‣ In Console & GUI version of PIM - the model package has been unchanged

�12

pacemaker-console

�13

pacemaker-console-command

�14

pacemaker-android-v1

�15

pacemaker-android-v2

�16

pacemaker-android-v3

�17

pacemaker-android-v4

�18

Same Model + Persistence
�19

Different UIs
Console Android

Separated Presentation - Synchronization

• It will be necessary for the domain to notify the presentation if any changes
occur.

• 2 common solutions:

‣ Flow Synchronization

‣ Observer Synchronization

• Both of these solutions attempt will ensure that the model and the views are
rendering the same information.

• However, both must ensure that Separated Presentation is preserved.

�20

Except where otherwise noted, this content is
licensed under a Creative Commons
Attribution-NonCommercial 3.0 License.

!
For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

