Design Patterns

MSc in Communications Software

Eamonn de Leastar (edeleastar@wit.ie)

Department of Computing, Maths & Physics
Waterford Institute of Technology

http://www.wit.ie

http://elearning.wit.ie

Waterford Institute of Technology o elLearning

cr‘\ o7} INSTITIOID THCNEOLAIOCHTA PHORT LARGE su pport unit

-.V-'_—-a;

mailto:edleastar@wit.ie

Patterns for Graphic User Interface / Rich Client
Development

Sources & Context

Source: GoF

o
-
"

So far - patterns have been part of the

‘Classical’ GoF reference. DGSlgn Pattems

Elements of Reusable

« Canonical form - much referenced. Object-Oriented Software
Erich Gamma
Rfcl.hﬂrd Eelm
. i Ralph Johnson
Has had a strong influence on Java and John Vlissidles
on the JDK.

“First generation” approach to GUIs

=
il
et
-
-
I
o3
i
-
—
[
=
re
I_||I-_.
[
(i
el
e
=
fa
~
]
—
—
—
=
=
H]
m
-
m
g

Foreword by Gracdy Booch

Source: POEAA:
Patterns of Enterprise Application Development

Catalogue of patterns for “Enterprise”
development.

PATTERNS OF
ENTERPRISE

Topics

- how to layer an enterprise application APPLICATION
ARCHITECTURE
- how to organize domain logic

Magrrin FowLer B8

* how to tie that logic to a relational
database,

* how to design a web based
presentation

- http://martinfowler.com/

http://martinfowler.com

—aa Work In
2rogress

Development of Further Patterns of
Enterprise Application Architecture

* A web-only

resource continuing
to document further

“enterprise”
patterns.

+ Considers GUI
development

patterns not

discussed in P of

Eaa text.

\

When I wrote Patterns of Enterprise Application Architecture, I was very conscious
of the incompleteness of the book. There is much, much more to say about enterprise
application development than I could say in one book. So I've been working on
capturing further patterns, with the hope that I'll put together more volumes.

Progress has been slow, one thing I'm learning is that writing doesn't seem to be
getting easier. To further slow down matters, I haven't been working on this material
actively since the summer of 2006, instead concentrating on material around Domain
Specific Languages. As a result the material on site is pretty much frozen for the
moment, although I do hope to pick it up again.

In any case I've found it valuable to have the patterns available on my site so that
people can use the half-worked thoughts, and also give me some feedback. It also
means the thinking is out there, even in partly digested form, until I get back to
working on this material properly

Remember that these are very much work in progress. I'm likely to change my mind
about pattern names and scope as I go along. When I make significant revisions to
the material here, I post a note on my site RSS feed.

I welcome comments, particularly from those who have come across things similar to
the patterns I talk about. I'm always keen to hear about peoples' experiences. I may
be able to reply quickly, if so please forgive me. Feedback is always welcome,
ive me feedback about typos and the like - it's too early for me
to be worrying about that.

Narratives

Temporal Patterns
Focusing on Events
Patterns for Accounting
Organizing Presentation
Logic

GUI Architectures
Temporal Patterns

Audit Log
Time Point

Effectivity

Temporal Property
Temporal Object
Snapshot

Events

Domain Event

Event Collaboration
Event Sourcing
Agreement Dispatcher
Parallel Model
Retroactive Event
Accounting Patterns
Account

Accounting Entry
Accounting Transaction
Replacement Adjustment
Reversal Adjustment

—Difference Adiuciment

Presentation Patterns
Notification
Supervising Controller
Passive View
Presentation Model
Event Agagregator
Window Driver

Flow Synchronization
Observer Synchronization
Presentation Chooser
Separated Presentation

o

Graphical User Interfaces

 GUIs - often called Rich Clients - can be
notoriously complex.

 Inherent complexity: the GUI component
set is at varying levels of abstraction with
sophisticated event mechanisms:

» Controls

» Containers
» Windows
» Menus

+ Accidental complexity: domain logic can
easily become hopelessly intermingled
with the GUI specific logic.

> Selection

i..J, Marquee

@s Separator ToolItem
o Instances of this class represent a selectable

L} user interface object that represents a separator :

| in a tool bar.

suoneacomposie [joasnrorm
["]TabFolder (] Tabltem

[¥]CTabFolder (sal] CTabltem

t-4 ViewForm .| CBanner

> Layouts

ﬁ ﬁAbsqute layout | FillLayout :I:I:GridLayout
I FormLayout - RowLayout || StackLayout
<7 FlowLayout @Boxuyout 171 BorderLayout
'ljcroupLayout

= Controls

4z Label [Text

- Combo (=3 Button

v/| Check Button
[Spinner
] Table
+ Tableltem
|E5| Tree
rEE,ETreeltem
= ToolBar
4 Check Toolltem
DropDown Toolltem
fiz] CoolBar
— Horizontal Separator
ProgressBar
@Scale
|'@| Browser
vs ExpandBar
L] CLabel
|=| StyledText
= DragSource

% Trayltem

(= ICara

(¢ Radio Button
7 DateTime

f TableColumn
++ TableCursor

] TreeColumn
| = List
Toolltem
Radio Toolltem
EF Separator Toolltem
[] Coolitem

| Vertical Separator
|#| Canvas
(USlider

“z Link

¥ Expanditem
ﬂEICCombo
E]TableTree

= |DropTarget

GUI Events

A significant source of complexity

Toolkit handles fine-grained events

actual : Text Fiald reading Form targetl - Text Field

varance @ Taxt
Field

user enters reading |

» Mouse entered, exited
» Mouse pressed

» Radio button pressed, armed, rollover

Application handles coarse-grained events:
» Radio button selected
» Action performed

» Domain property changed

v

coherence is to be preserved.

text changed
il

=t

geiText

petText

|

=

|
compare actual o background

setText |

setTextColor |

Managing the flow of these events requires careful consideration if design

|
|
|
|
|
|
>
:,.|
I

Patterns

- GoF Patterns weak in this area - tend to be too fine grained.
« One “Composed Pattern” is discussed:

» Model View Controller
- Eaa Work in Progress (http://martinfowler.com/eaaDev/)

» Notification

» Supervising Controller

» Passive View

» Presentation Model

» Event Aggregator

» Window Driver

» Flow Synchronization

» Observer Synchronization

» Presentation Chooser | In particular, read |
» Autonomous View http://martinfowler.com/eaaDev/uiArchs.html

_ for background to these patterns
» Model View Presenter

http://martinfowler.com/eaaDev/
http://martinfowler.com/eaaDev/uiArchs.html

Selected Patterns

* Reasonable subset of fowler:
» Separated Presentation
» Flow Synchronization
» Observer Synchronization
» Passive View
» Supervising Controller/Presenter
» Model View Presenter

» + review Model View Controller in this context

Separated Presentation

- A form of layering where presentation code and domain code in separate
layers with the domain code unaware of presentation code.

» Review all the data and behavior in a system identifying code involved in
the presentation. Presentation code would manipulate GUI widgets and
structures only.

» We then divide the application into two logical modules with all the
presentation code in one module and the rest in another module.

» The layers are a logical and not a physical construct. Java packages are a
useful separation mechanism

10

Separated Presentation -
Dependencies

« Apply a strict visibility rule. The
presentation is able to call the domain
but not vice-versa.

 This can be checked as part of a
build with dependency checking
tools. (Structure101)

* The domain should be utterly unaware
of what presentations may be used
with it.

 This both helps keep the concerns
separate and also supports using
multiple presentations with the same
domain code.

ui

(® MainAppWindow

(® AddContactDialog (® ContactListView

® About (® ContactPanel

model

® Pm

(9 AddressBook

(® contact

util

(® BinarySerializer (® XMLSerializer

© ISerializationStrategy

11

Separated Presentation - Ul Independent

- A good mental test to use to check you are using Separated Presentation is
to imagine a completely different user interface.

» If you are writing a GUI imagine writing a command line interface for the
same application.

» Ask yourself if anything would be duplicated between the GUI and
command line presentation code - if it is then it's a good candidate for
moving to the domain

» In Console & GUI version of PIM - the model package has been unchanged

12

pacemaker-console

= controllers
{3 PacemakerShell
AR
AYA
I\ .
Q Pagge'g\?(q%rServme
| J"‘ L l\-
Y ol I
@ Pacemak l\mpl
N \
:"‘ n’fl’ \I, ‘
= iy, / pars&’s

& JsonParser

€% UserMixin

- models

{3 JSONSerializer

1?1-‘

{9 DateTimeFormatters

(® FieLogger = & Serializer

13

pacemaker-console-command

{® CreateUserCommand {9 DeleteUserCommand

G Command

controllers =

{3 PacemakerAPI

models <

J user

(3 Activity

{3 Location

main

{3 PacemakerShell

command

{3 CommandDispatcher

{® HelpCommand {® ListUsersCommand {9 RedoCommand {® UndoCommand

{® CommandSpecifications

parsers
{9 AsciiParser
€% ActivityMixin ® Parser
utils

{3 JSONSerializer

{9 DateTimeFormatters

{3 JsonParser

Q UserMixin

(& XMLSerializer

&) Serializer

14

pacemaker-android-v1

controllers

{9 CreateActivity

{3 ActivitiesList

- pacemaker

{® BuidConfig | | @ R

- models

(3 Activity

15

pacemaker-android-v2

- controllers

{3 CreateActivity
'3
|

{3 ActivitiesList

Q ActivityAdapter

- main

{3 PacemakerApp

- pacemaker

{9 BuildConfig ®OR

= models

(3 Activity

16

pacemaker-android-v3

controllers

{(d ActivitiesList
r

.

{3 CreateActivity

~
~
-~
-~

.

® Wekcome

® signup \

& ActivityAdapter & Login

- pacemaker

{9 BuildConfig

main

(& PacemakerApp

- models

G R & Activity | (3 User

17

pacemaker-android-v4

controllers

{d ActivitiesList

rar

} »
41 |1}

\ | ¢

@ CreateActivity

1 e

1 -
| ‘.
-~
! -~
Y >

O Wplcome R

P\ : .
<! i ", .
| N A
e \)

@ ActivityAdapter B\ (@ Login

|

’
- -
-

Lo
\

® PacemakerMediator

@ PacemakerPl |

“

3

@ CreateActivity| | G} CreateUser| | (& GetActiv

‘..' N i \Y \. e ’,'L
\ -.\ . \ \ ..'ﬁ | '
\ ~—— s \, L'\ s \ - - \
pacemaker i \“: m’ky W \‘,t VAN models
. Qi g " R "-“t N b\ N
e TSR AR
1 @Rewest | [@ usonparser
BuildCon R s - [
© "o © € Response | | (& Rest (3 Activity % User

18

{3 CreateUserCommand {3 DeleteUserCommand

{3' command

Different Uls

Console

main
{3 PacemakerShell

command

O CommandDispatcher

O HelpCommand O ListUsersCommand 0 RedoCommand O UndoCommand

Android

controllers

{J ActivitiesList
r
1
{3 CreateActivity
(~ s -

(& welcome

@ signup

{3 CommandSpecifications

Q ActivityAdapter

0 Login

= models

(J user

(3 Activity

0 Location

{3 JSONSerializer

{3 DateTimeFormatters

Same Model + Persistence

utils

{3 XMLSerialzer

&) Serializer

19

Separated Presentation - Synchronization

- It will be necessary for the domain to notify the presentation if any changes
ocCcur.

« 2 common solutions:
» Flow Synchronization
» Observer Synchronization

- Both of these solutions attempt will ensure that the model and the views are
rendering the same information.

- However, both must ensure that Separated Presentation is preserved.

20

OIS

Except where otherwise noted, this content is
licensed under a Creative Commons
Attribution-NonCommercial 3.0 License.

For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

%/l Waterford Institute of Technology o eLearning

o, INSTITIOID TECNEOLAIOCHTA PHORT LARCE SUppor t unit

"

