
Produced
by

Department of Computing, Maths & Physics

Waterford Institute of Technology
http://www.wit.ie

http://elearning.wit.ie

MSc Computer Science

Design Patterns

Eamonn de Leastar (edeleastar@wit.ie)

!

mailto:edleastar@wit.ie

Enterprise Web Performance

Performance

• Response Time

• Responsiveness

• Latency

• Throughput

• Load

• Load Sensitivity

• Efficiency

• Capacity

• Scalability

Response Time

• Amount of time it takes for the system to process a
request from the outside.

• This may be a UI action, such as pressing a button, or a
server API call.

Responsiveness

• How quickly the system acknowledges a request as opposed to
processing it.

• Important if users may become frustrated if a system has low
responsiveness, even if its response time is good.

• If the system waits during the whole request, then your responsiveness
and response time are the same.

• If systems indicates receipt of the request before completion, then
responsiveness is improved.

• e.g. providing a progress bar during a file copy improves the
responsiveness of your user interface, even though it doesn't improve
response time.

Latency

• Minimum time required to get any form of response, even if
the work to be done is nonexistent.

• Asking a program to do nothing, but respond to the user that
it has done doing nothing, should be almost instantaneous.

• However, this is only the case if program runs locally (on
device).

• If the program runs on a remotely, a few seconds required to
make the request and process response.

• Latency beyond control - so attempt to minimize remote calls.

Throughput

• How many tasks/transactions can be done in a given
amount of time.

• e.g. copying of a file, throughput might be measured in
bytes per second.

• For enterprise applications a typical measure is
transactions per second (tps),

• but the problem is that this depends on the complexity
of your transaction.

Performance
• Performance may be measured as

• throughput,

• response time

• responsiveness

• Difficult to talk about performance when a technique improves
throughput but decreases response time

• From a user's perspective responsiveness may be more important
than response time, so improving responsiveness at a cost of
response time or throughput will increase performance

Load

• How much stress a system is under, which might be
measured in how many users are currently connected.

• The load is usually a context for some other
measurement, such as a response time.

• Thus, you may say that the response time for some
request is 0.5 seconds with 10 users and 2 seconds with
20 users.

Load Sensitivity

• An expression of how the response time varies with the load.
Example:

• System A has a response time of 0.5 seconds for 10
through 20 users

• System B has a response time of 0.2 seconds for 10 users
that rises to 2 seconds for 20 users.

• In this case system A has a lower load sensitivity than system
B.

… also expressed as system B degrades more than system A.

Efficiency

• Performance divided by resources.

• eg A system that gets 30 tps on two CPUs is more
efficient than a system that gets 40 tps on four
identical CPUs.

Capacity

• An indication of maximum effective throughput or load.

• This might be an absolute maximum or a point at which
the performance dips below an acceptable threshold.

Scalability

• A measure of how adding resources (usually hardware) affects
performance.

• A scalable system is one that allows you to add hardware and
get a commensurate performance improvement, such as
doubling how many servers you have to double your
throughput.

• Vertical scalability, or scaling up, means adding more power
to a single server, such as more memory.

• Horizontal scalability, or scaling out, means adding more
servers.

Comparison: Swordfish V Camel - 1 Server

• On 1 server
Swordfish's
capacity is 20 tps
while Camel's
capacity is 40 tps.

• Which has better
performance?
Which is more
scalable?

• We can't answer the scalability
question from this data, and we can
only say that Camel is more efficient
on a single server.

Comparison: Swordfish V Camel - 2 Servers

• On 2 servers
Swordfish's
capacity is 25 tps
while Camel's
capacity is 50 tps.

• Which has better
performance?
Which is more
scalable?

• Camel's capacity is still better, but
Swordfish looks like it may scale out
better.

• If we continue adding servers we may
discover that Swordfish gets 15 tps
per extra server and Camel gets 10.

• Given this data we can say that
Swordfish has better horizontal
scalability, even though Camel is more
efficient for less than five servers.

Strategies - Scalability vs Efficiency

• It may make sense to build for hardware scalability rather
than capacity or even efficiency.

• Scalability gives you the option of better performance if
you need it and may be easier to do (just add hardware).
Software efficiency improvements may be complex and
expensive to implement

• Adding new hardware is often cheaper than making
software run on less powerful systems. Similarly, adding
more servers is often cheaper than adding more
programmers—providing that a system is scalable.

Except where otherwise noted, this content is
licensed under a Creative Commons
Attribution-NonCommercial 3.0 License.

!
For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

