
Produced
by

Department of Computing, Maths & Physics

Waterford Institute of Technology
http://www.wit.ie

http://elearning.wit.ie

MSc Computer Science

Design Patterns

Eamonn de Leastar (edeleastar@wit.ie)

!

mailto:edleastar@wit.ie

Domain Logic

Domain Logic

• Also also referred to as business logic.

• The work that this application needs to do for the domain
you're working with.

• It involves calculations based on inputs and stored data,
validation of any data that comes in from the
presentation, and figuring out exactly what data source
logic to dispatch, depending on commands received
from the presentation.

Domain Logic Patterns

• Domain Model

• Table Module

• Service Layer

Domain Model
An object model of the domain that
incorporates both behaviour and data

• At its worst business logic can be very
complex.

• Rules and logic describe many
different cases and slants of
behaviour, and it's this complexity that
objects were designed to work with.

• A Domain Model creates a web of
interconnected objects, where each
object represents some meaningful
individual, whether as large as a
corporation or as small as a single line
on an order form

Domain Model

Table Module (1)

• One of the key messages of object
orientation is bundling the data with the
behaviour that uses it.

• The traditional object-oriented approach
is based on objects with identity, along
the lines of Domain Model. Thus, if we
have an Employee class, any instance of
it corresponds to a particular employee.

• This scheme works well because once
we have a reference to an employee, we
can execute operations, follow
relationships, and gather data on him.

A single instance that handles the business
logic for all rows in a database table or view.

Table Module (2)

• One of the problems with Domain Model is the interface with
relational databases.

• Domain Model keeps the database a arms length - usually
requiring an Object Relation Mapping layer to persist the model to
the database.

• A Table Module eschews ORM, and organizes domain logic with one
class per table in the data-base, and a single instance of a class
contains the various procedures that will act on the data.

• The primary distinction with Domain Model is that, if you have many
orders, a Domain Model will have one order object per order while a
Table Module will have one object to handle all orders.

Service Layer

• Enterprise applications often require different
kinds of interfaces to the data they store and
the logic they implement

• These interfaces need common interactions
with the application to access and manipulate
its data and invoke its business logic.

• May be complex, involving transactions across
multiple resources and the coordination of
several responses to an action.

• A Service Layer defines an application's
boundary and its set of available operations
from the perspective of interfacing client layers.

Defines an application's boundary with a layer of
services that establishes a set of available
operations and coordinates the application's
response in each operation.

Service Layer

Pacemaker-Service

@Entity	
public class Activity extends Model	
{	
 @Id	
 @GeneratedValue	
 public Long id;	
 public String type;	
 public String location;	
 public double distance;	!
 //…	
}	

Domain Model

@Entity	
public class User extends Model	
{	
 @Id	
 @GeneratedValue	
 public Long id;	
 public String firstname;	
 public String lastname;	
 public String email;	
 public String password;	
 	
 @OneToMany(cascade=CascadeType.ALL)	
 public List<Activity> activities = new ArrayList<Activity>();	!
 //…	
}

Service Layer: Routes + PacemakerAPI

• Each route maps to a
PacemakerAPI method

• Support standard Create/Read/
Update/Delete operations

GET /api/users controllers.PacemakerAPI.users()	
DELETE /api/users controllers.PacemakerAPI.deleteAllUsers()	
POST /api/users controllers.PacemakerAPI.createUser()	!
GET /api/users/:id controllers.PacemakerAPI.user(id: Long)	
DELETE /api/users/:id controllers.PacemakerAPI.deleteUser(id: Long)	
PUT /api/users/:id controllers.PacemakerAPI.updateUser(id: Long)	!
GET /api/users/:userId/activities controllers.PacemakerAPI.activities(userId: Long)	
POST /api/users/:userId/activities controllers.PacemakerAPI.createActivity(userId: Long)	!
GET /api/users/:userId/activities/:activityId controllers.PacemakerAPI.activity(userId: Long, activityId:Long)	
DELETE /api/users/:userId/activities/:activityId controllers.PacemakerAPI.deleteActivity(userId: Long, activityId:Long)	
PUT /api/users/:userId/activities/:activityId controllers.PacemakerAPI.updateActivity(userId: Long, activityId:Long)

API Namespace

Retrieve / Delete all users

Create a User

Retrieve / Delete / Update specific user

!

Retrieve all activities for a user

Create an activity for a user

Retrieve / Delete / Update specific activity

GET /api/users 	
DELETE /api/users 	
!
 	
POST /api/users 	
!
!
GET /api/users/:id 	
DELETE /api/users/:id 	
PUT /api/users/:id

GET /api/users/:userId/activities 	
 	
 	
POST /api/users/:userId/activities 	
!
 	
GET /api/users/:userId/activities/:activityId 	
DELETE /api/users/:userId/activities/:activityId 	
PUT /api/users/:userId/activities/:activityId

createUser - Sequence Diagram

 public static Result createUser()	
 {	
 User user = renderUser(request().body().asJson().toString());	
 user.save();	
 return ok(renderUser(user));	
 }

JSON

• All responses
delivered as
JSON objects via
this parser

!
public class JsonParser	
{	
 private static JSONSerializer usersSerializer = new JSONSerializer().exclude("class");	
 private static JSONSerializer userSerializer = new JSONSerializer().exclude("class").include("activities");	
 	
 private static JSONSerializer activitySerializer = new JSONSerializer().exclude("class");	!
 public static User renderUser(String json)	
 {	
 return new JSONDeserializer<User>().deserialize(json, User.class); 	
 }	
 	
 public static String renderUser(Object obj)	
 {	
 return userSerializer.serialize(obj);	
 }	
 	
 public static String renderUsers(Object obj)	
 {	
 return usersSerializer.serialize(obj);	
 }	
 	
 public static List<User> renderUsers(String json)	
 {	
 return new JSONDeserializer<ArrayList<User>>().use("values", User.class).deserialize(json);	
 } 	
 	
 public static Activity renderActivity(String json)	
 {	
 Activity activity = new JSONDeserializer<Activity>().deserialize(json, Activity.class);	
 return activity;	
 }	
 	
 public static String renderActivity(Object obj)	
 {	
 return activitySerializer.serialize(obj);	
 }	!
 public static List<Activity> renderActivities (String json)	
 {	
 return new JSONDeserializer<ArrayList<Activity>>().use("values", Activity.class).deserialize(json);	
 } 	
}

createActivity
Sequence
Diagram

 public static Result createActivity (Long userId)	
 { 	
 User user = User.findById(userId);	
 Activity activity = renderActivity(request().body().	
 asJson().toString()); 	
 	
 user.activities.add(activity);	
 user.save();	
 	
 return ok(renderActivity(activity));	
 }

deleteUser Sequence Diagram

 	
 public static Result deleteUser(Long id)	
 {	
 Result result = notFound();	
 User user = User.findById(id);	
 if (user != null)	
 {	
 user.delete();	
 result = ok();	
 }	
 return result;	
 }	

Except where otherwise noted, this content is
licensed under a Creative Commons
Attribution-NonCommercial 3.0 License.

!
For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

