Design Patterns

Higher Diploma in Science in Computer Science

Eamonn de Leastar (edeleastar@wit.ie)

Department of Computing, Maths & Physics
Waterford Institute of Technology

http://www.wit.ie

http://elearning.wit.ie

Waterford Institute of Technology
cr‘l\7 ¥4 INSTIMOID TECNEOLAIOCHTA PHORT LARCE

._‘-"‘—..;

-~

elLearning
support unit

mailto:edleastar@wit.ie

Web

Presentation & Session

Patterns

Client Session

Server Session f{ Session State |

Database Session

\

Optimistic Lock

Pessimistic Lock |

Coarse Grained Lock

Offline Concurrency)

Implicit Lock

Remote Facade
Data Transfer Object

H Distribution

Metadata Mapping

Query Object H O/R Metadata Mapping

Repository

Transaction Script

Domain Model

Table Module

Service Layer

|

{ Domain Logic

Identity Field

Foreign Key

Association

© Mapping

Dependent ‘

Inherritance

Embedded Value

-{O/R Structure

Serialized LOB

Single Table

Class Table |- Inheritance

Concrete Table |

Enterprise
Patterns

Special Case

Money
Plugin
» Mapper
md Interface
Base |- Service Stub
Gateway
| Registry
' Value Object
Record Set
| Layer Supertype
g Transform
View -| Template
‘ Two Step
—— Web Presentation) Application
Controller - Page
Front
MVC
Gateway & s 08
Data Source } Rowbata,
\ . Active Record
~ Data Mapper
Lazy Load

'O/R Behaviour |<|_gentity Map

Unit of Work

Web Presentation Patterns

+ Clear advantages:

* Nno client software to install, a common Ul approach,
and easy universal access.

important. P
ower layers

However, INntl

mate knowledge of HT TP now seen as
revious attempt to ‘abstract away’ HT TP to

nave incurred excessive complexity costs

Modern web framework fully expose HT TP, and assume
developers are comfortable with the primary mechanisms

Web

Presentation

Patterns

- Model View Controller

+ Page Controller

- Front Controller

- Template View

Mode View Controller

- Controller Model View

Controller (MVC) is one of
the most quoted (and most

misquoted) patterns around.

- |t started as a framework

developed by Trygve
Reenskaug for the Smalltalk
platform in the late 1970s.

+ Since then it has played an

iInfluential role iIn most Ul
frameworks and in the
thinking about Ul design.

Splits user interface interaction
INto three distinct roles.

Viaw e B Controller

Uodel

MVC In pacemaker-service

Vl—?j > pacemaker-service [pacemaker-service mag
v ifapp

» 3 (default package)

[}“j Controiters ~

» [J) Accounts.java
» [J) Dashboard.java

» i1} PacemakerAPl.java

T models
> [J) Activity.java

> [J] User.java

V¥ i parsers

» |J) JsonParser.java
{J{Fj views N\
4 accounts_login.scala.html
4 accounts_signup.scala.html
4 dashboard_main.scala.html
4 dashboard_uploadactivity.scala.html
4 main.scala.html
4 welcome_main.scala.html

4 welcome_menu.scala.html

> Htest

» =, Referenced Libraries

P =) Scala Library [2.10.3)

» = JRE System Library [Java SE 7 [1.7.0_40]]
¥ (=5 conf

» (= evolutions

——

-} application.conf /
! initial-data ym]|
o routes /

- Routes define acceptable
URLs and map them to
Actions

- Actions interact with Domain
logic and Render..

- Views, which are served to
the browser

Renders information into HTML by
embedding markers in an HTML

page.

Template View

- Compose a Dynamic Web
page as you do a static

page bUt <HTML==P=<B=>

<jsp:.getProperty

' e Book Helper ;?Ur;izl"hj’:?tiotr;filsg;
* put in markers that can ~ [ees n _ BRI~
. T T T T getTitle — — —| Author;
be resolved into calls to getAuthor =jsp:getProperty
. name="hookHelper'
gather dynamic popert="autnor-
iInformation. <HTML>

+ Since the static part of
the page acts as a
template for the
particular response

pacemaker-service lemplate Method

public class Accounts extends Controller

{
//

public static Result login()
{

}
}

return ok(accounts_login.render());

- Templates in Play are
compiled as scala
functions

- Compile time check +
potential efficiency
benefits

@)

@main("Welcome to Pacemaker") {
@welcome_menu()

<section class="ul raised segment">
<div class="ui grid">
<aside class="ui six wide column">

</aside>
<div class="u1i ten wide column fluid form">
<div class="ul stacked segment">
<form action="/authenticate" method="POST">
<h3 class="u1l header">Log-in</h3>
<div class="field">
<label>Email</label>
<input placeholder="Email" type="text" name="email">
</div>
<div class="f1ield">
<label>Password</label>
<input type="password" name="password">
</div>
<button class="ui blue submit button">Login</button>
</form>
</div>
</div>
</div>
</section>

}

Sessions

- Client Session State
+ Stores session state on the client.
+ Server Session State
Keeps the session state on a server system in a serialized form
Database Session State

- Stores session data as committed data in the database.

Play : Sessions and Flash Scopes

- If you have to keep data across multiple HT TP requests, you can save them in the
Session or Flash scopes.

- Data stored in the Session are available during the whole user Session,
- Data stored in the Flash scope are available to the next request only.

-+ Session and Flash data are not stored by the server but are added to each subsequent
HTTP request, using the cookie mechanism.

- This means that the data size is very limited (up to 4 KB) and that you can only store
string values.

- Cookie values are signed with a secret key so the client can’t modify the cookie data.

- The Session is not intended to be used as a cache. If you need to cache some data
related to a specific Session, you can use the Play built-in cache mechanism and use
store a unigue ID in the user Session to keep them related to a specific user.

Session Object Encapsulates Session mechanisms

- Use emall as application specific
session id

- On each request, retrieve this id
to determine current user details

public class Accounts extends Controller

{

public static Result logout()
{

session().clear();
return ok(welcome_main.render());

}

public static Result authenticate()
{

Form<User> boundForm = loginForm.bindFromRequest();
1f(loginForm.hasErrors())

{
public class Dashboard extends Controller return badRequest(accounts_login.render());
{ ¥
public static Result index() ?lse
{ String email = session().get("email"); session("email”, boundForm.get().email);
User user = User.findByEmail(email); return redirect(routes.Dashboard.index());
return ok(dashboard_main.render(user.activities)); }
} hy
} ks

Secret key

appllca'tIOn Conf # The secret key is used to secure cryptographics functions.
. # If you deploy your application to several instances be sure to use the same key!

application.secret=":qEJLP]R2D8prCCf9 @F4d1lqg_ URXLT3CmxucR7ued rfspew?X?S_J;P; VsZAR"

OIS

Except where otherwise noted, this content is
licensed under a Creative Commons
Attribution-NonCommercial 3.0 License.

For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

. Waterford Institute of Technology o eLearmng_
c} g WNSTITIOID TECNEOLAIOCHTA PHORT LARCE Su ppor[unit

Y

