
Produced
by

Department of Computing, Maths & Physics

Waterford Institute of Technology
http://www.wit.ie

http://elearning.wit.ie

MSc in Computer Science

Design Patterns

Eamonn de Leastar (edeleastar@wit.ie)

!

mailto:edleastar@wit.ie

POSA Patterns

Other sources - POSA - 5 Volumes!

Volume 4	

• Collates a terse description of
large collection of patterns
associated with Distributed
Systems

• Repeats patterns from earlier
volumes in series + patterns
from GoF and PoEAA

• Extensive discussion on how
multiple patterns participate in
solving a given problem

Catalog (Extract)	

• Sophisticated
and Specialised

Pattern Language
From Mud To Structure: DOMAIN MODEL (182), LAYERS (185), MODEL-VIEW-CONTROLLER (188),
PRESENTATION-ABSTRACTION-CONTROL (191), MICROKERNEL (194), REFLECTION (197), PIPES
AND FILTERS (200), SHARED REPOSITORY (202), BLACKBOARD (205), and DOMAIN OBJECT (208).	

Distribution Infrastructure: MESSAGING (221), MESSAGE CHANNEL (224), MESSAGE ENDPOINT (227),
MESSAGE TRANSLATOR (229), MESSAGE ROUTER (231), BROKER (237), CLIENT PROXY (240),
REQUESTOR (242), INVOKER (244), CLIENT REQUEST HANDLER (246), SERVER REQUEST HANDLER
(249), and PUBLISHER-SUBSCRIBER (234).	

Event Demultiplexing and Dispatching: REACTOR (259), PROACTOR (262), ACCEPTOR-CONNECTOR (265),
and ASYNCHRONOUS COMPLETION TOKEN (268).	

Interface Partitioning: EXPLICIT INTERFACE (281), EXTENSION INTERFACE (284), INTROSPECTIVE
INTERFACE (286), DYNAMIC INVOCATION INTERFACE (288), PROXY (290), BUSINESS DELEGATE
(292), FACADE (294), COMBINED METHOD (296), ITERATOR (298), ENUMERATION METHOD (300), and
BATCH METHOD (302).	

Component Partitioning: ENCAPSULATED IMPLEMENTATION (313), WHOLE-PART (317), COMPOSITE
(319), MASTER-SLAVE (321), HALF-OBJECT PLUS PROTOCOL (324), and REPLICATED COMPONENT
GROUP (326).	

Application Control: PAGE CONTROLLER (337), FRONT CONTROLLER (339), APPLICATION
CONTROLLER (341), COMMAND PROCESSOR (343), TEMPLATE VIEW (345), TRANSFORM VIEW (347),
FIREWALL PROXY (349), and AUTHORIZATION (351).	

Concurrency: HALF-SYNC/HALF-ASYNC (359), LEADER/FOLLOWERS (362), ACTIVE OBJECT (365),
MONITOR OBJECT (368).	

Synchronization: GUARDED SUSPENSION (380), FUTURE (382), THREAD-SAFE INTERFACE (384),
DOUBLE- CHECKED LOCKING (386), STRATEGIZED LOCKING (388), SCOPED LOCKING (390),
THREAD-SPECIFIC STORAGE (392), COPIED VALUE (394), and IMMUTABLE VALUE (396).	

Object Interaction: OBSERVER (405), DOUBLE DISPATCH (408), MEDIATOR (410), MEMENTO (414),
CONTEXT OBJECT (416), DATA TRANSFER OBJECT (418), COMMAND (412), and MESSAGE (420).	

Adaptation and Extension: BRIDGE (436), OBJECT ADAPTER (438), INTERCEPTOR (444), CHAIN OF
RESPONSIBILITY (440), INTERPRETER (442), VISITOR (447), DECORATOR (449), TEMPLATE METHOD
(453), STRATEGY (455), NULL OBJECT (457), WRAPPER FACADE (459), EXECUTE-AROUND OBJECT
(451), and DECLARATIVE COMPONENT CONFIGURATION (461).	

Object Behavior: OBJECTS FOR STATES (467), METHODS FOR STATES (469), and COLLECTIONS FOR
STATES (471).	

Resource Management: OBJECT MANAGER (492), CONTAINER (488), COMPONENT CONFIGURATOR
(490), LOOKUP (495), VIRTUAL PROXY (497), LIFECYCLE CALLBACK (499), TASK COORDINATOR
(501), RESOURCE POOL (503), RESOURCE CACHE (505), LAZY ACQUISITION (507), EAGER
ACQUISITION (509), PARTIAL ACQUISITION (511), ACTIVATOR (513), EVICTOR (515), LEASING (517),
AUTOMATED GARBAGE COLLECTION (519), COUNTING HANDLE (522), ABSTRACT FACTORY (525),
BUILDER (527), FACTORY METHOD (529), and DISPOSAL METHOD (531).	

Database Access: DATABASE ACCESS LAYER (538), DATA MAPPER (540), ROW DATA GATEWAY (542),

From Mud To Structure
From Mud To Structure: DOMAIN MODEL
(182), LAYERS (185), MODEL-VIEW-
CONTROLLER (188), PRESENTATION-
ABSTRACTION-CONTROL (191),
MICROKERNEL (194), REFLECTION (197),
PIPES AND FILTERS (200), SHARED
REPOSITORY (202), BLACKBOARD (205),
and DOMAIN OBJECT (208).

Distribution Infrastructure
Distribution Infrastructure: MESSAGING (221),
MESSAGE CHANNEL (224), MESSAGE
ENDPOINT (227), MESSAGE TRANSLATOR
(229), MESSAGE ROUTER (231), BROKER
(237), CLIENT PROXY (240), REQUESTOR
(242), INVOKER (244), CLIENT REQUEST
HANDLER (246), SERVER REQUEST HANDLER
(249), and PUBLISHER-SUBSCRIBER (234).

Event Demultiplexing and
Dispatching

Event Demultiplexing and Dispatching:
REACTOR (259), PROACTOR (262),
ACCEPTOR-CONNECTOR (265), and
ASYNCHRONOUS COMPLETION TOKEN
(268).

Interface Partitioning

Interface Partitioning: EXPLICIT
INTERFACE (281), EXTENSION
INTERFACE (284), INTROSPECTIVE
INTERFACE (286), DYNAMIC
INVOCATION INTERFACE (288), PROXY
(290), BUSINESS DELEGATE (292),
FACADE (294), COMBINED METHOD
(296), ITERATOR (298), ENUMERATION
METHOD (300), and BATCH METHOD
(302).

Component Partitioning
Component Partitioning: ENCAPSULATED
IMPLEMENTATION (313), WHOLE-PART
(317), COMPOSITE (319), MASTER-SLAVE
(321), HALF-OBJECT PLUS PROTOCOL
(324), and REPLICATED COMPONENT
GROUP (326).

Application Control: PAGE
CONTROLLER (337), FRONT
CONTROLLER (339), APPLICATION
CONTROLLER (341), COMMAND
PROCESSOR (343), TEMPLATE VIEW
(345), TRANSFORM VIEW (347),
FIREWALL PROXY (349), and
AUTHORIZATION (351).

Concurrency Concurrency: HALF-SYNC/HALF-
ASYNC (359), LEADER/
FOLLOWERS (362), ACTIVE
OBJECT (365), MONITOR
OBJECT (368).

Synchronization
Synchronization: GUARDED SUSPENSION
(380), FUTURE (382), THREAD-SAFE
INTERFACE (384), DOUBLE- CHECKED
LOCKING (386), STRATEGIZED LOCKING
(388), SCOPED LOCKING (390), THREAD-
SPECIFIC STORAGE (392), COPIED VALUE
(394), and IMMUTABLE VALUE (396).

Object Interaction:
Object Interaction: OBSERVER (405),
DOUBLE DISPATCH (408), MEDIATOR
(410), MEMENTO (414), CONTEXT
OBJECT (416), DATA TRANSFER
OBJECT (418), COMMAND (412), and
MESSAGE (420).

Adaptation and Extension: BRIDGE (436),
OBJECT ADAPTER (438), INTERCEPTOR
(444), CHAIN OF RESPONSIBILITY (440),
INTERPRETER (442), VISITOR (447),
DECORATOR (449), TEMPLATE METHOD
(453), STRATEGY (455), NULL OBJECT
(457), WRAPPER FACADE (459), EXECUTE-
AROUND OBJECT (451), and DECLARATIVE
COMPONENT CONFIGURATION (461).

Object behaviour Object Behavior: OBJECTS
FOR STATES (467), METHODS
FOR STATES (469), and
COLLECTIONS FOR STATES
(471).

Resource Management: OBJECT MANAGER (492), CONTAINER
(488), COMPONENT CONFIGURATOR (490), LOOKUP (495),
VIRTUAL PROXY (497), LIFECYCLE CALLBACK (499), TASK
COORDINATOR (501), RESOURCE POOL (503), RESOURCE
CACHE (505), LAZY ACQUISITION (507), EAGER
ACQUISITION (509), PARTIAL ACQUISITION (511),
ACTIVATOR (513), EVICTOR (515), LEASING (517),
AUTOMATED GARBAGE COLLECTION (519), COUNTING
HANDLE (522), ABSTRACT FACTORY (525), BUILDER (527),
FACTORY METHOD (529), and DISPOSAL METHOD (531).

Composed Patterns Example

• 14 Patterns involved in
implementing a Object
Request Broker

Half Sync / Half Sync Example

• Android Activities are synchronous - single threaded in
the context of user interaction

• Service access is asynchronous - inherently unreliable
access to remote application service

• Half Sync/Half Async an appropriate pattern to tackle this
problem

Half Sync/ Half Async Pattern - Context

• When developing concurrent software, specifically a
concurrent ENCAPSULATED IMPLEMENTATION (313) or
a network server that employs a REACTOR (259) or
PROACTOR (262) event handling infrastructure . . .

• . . . we need to make performance efficient and scalable
while ensuring that any use of concurrency simplifies
programming.

Half Sync/ Half Async Pattern - Synchrony

• Concurrent software often performs both asynchronous
and synchronous service processing.

• Asynchrony is used to process low-level system
services efficiently,

• Synchrony to simplify application service processing.

• To benefit from both programming models, however, it is
essential to coordinate asynchronous and synchronous
service processing efficiently.

Half Sync/ Half Async Pattern - Structure

• Decompose the services of concurrent software into two
separated layers—synchronous and asynchronous—and
add a queueing layer to mediate communication between
them.

Half Sync/ Half Async Pattern - Responsibilities

• Process higher-level services, such as domain
functionality, database queries, or file transfers,
synchronously in separate threads or processes.

• Conversely, process lower-level system services, such as
short-lived protocol handlers driven by interrupts from
network hard- ware, asynchronously.

• If services in the synchronous layer must communicate
with services in the asynchronous layer, have them
exchange messages via a queueing layer.

Half Sync/ Half Async Pattern - Benefits

• Simplification & performance

• The programming of higher-level synchronous processing services
are simplified without degrading the performance of lower-level
system services

• Separation of concerns

• Synchronization policies in each layer are decoupled so that each
layer need not use the same concurrency strategies

• Centralization of inter-layer communication

• Inter-layer communication is centralized at a single access point,
because all interaction is mediated by the queueing layer

Half Sync/ Half Async Pattern - Limitations

• May incur a boundary-crossing penalty

• Arising from context switching, synchronization, & data copying
overhead when data transferred between sync & async service  
layers via queueing layer

• Higher-level app services may not benefit from async I/O

• Depending on design of OS or application framework interfaces,
higher-level services may not use low-level async I/O devices
effectively

• Complexity of debugging & testing

• Apps can be hard to debug due to concurrent execution

Except where otherwise noted, this content is
licensed under a Creative Commons
Attribution-NonCommercial 3.0 License.

!
For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

