
Produced
by

Department of Computing, Maths & Physics

Waterford Institute of Technology
http://www.wit.ie

http://elearning.wit.ie

MSc in Computer Science

Design Patterns

Eamonn de Leastar (edeleastar@wit.ie)

!

mailto:edleastar@wit.ie

Yamba

• A - Enable Simple
Tweet + timeline
update on
background thread

• B - Move
background thread
to an Android
Service + restructure
application to use
Lambdas +
Command pattern

• C - replace custom
event mechanism
with generic
Broadcast Receivers

Xtend version
Encapsulated as

3 Labs

Android Services

• A Service is an application component that can perform long-
running operations in the background and does not provide a
user interface.

• An application can start a service and it will continue to run in
the background even if the user switches to another application.

• Additionally, a component can bind to a service to interact with
it and even perform interprocess communication (IPC).

• For example, a service might handle network transactions, play
music, perform file I/O, or interact with a content provider, all
from the background.

Service Types

• A service is "started" when an application
component (such as an activity) starts it by
calling startService().

• A service is "bound" when an application
component binds to it by calling
bindService().

Started

!

Bound

‘Started’ Service

• Once started, a service can run in the background
indefinitely, even if the component that started it is
destroyed.

• Usually, a started service performs a single operation and
does not return a result to the caller.

• For example, it might download or upload a file over the
network. When the operation is done, the service should
stop itself.

‘Bound’ Service

• A bound service offers a client-server interface that
allows components to interact with the service, send
requests, get results, and even do so across processes
with interprocess communication (IPC).

• A bound service runs only as long as another application
component is bound to it.

• Multiple components can bind to the service at once, but
when all of them unbind, the service is destroyed.

Caution!

• A service runs in the main thread of its hosting process—the
service does not create its own thread and does not run in a
separate process (unless you specify otherwise).

• This means that, if your service is going to do any CPU
intensive work or blocking operations (such as MP3 playback
or networking), you should create a new thread within the
service to do that work.

• By using a separate thread, you will reduce the risk of
Application Not Responding (ANR) errors and the application's
main thread can remain dedicated to user interaction with your
activities.

• Start/Stop
from
Activities
Menu

class StatusActivity extends Activity	
{ 	
 //...	
 override onOptionsItemSelected(MenuItem item)	
 {	
 switch (item.getItemId())	
 {	
 case R.id.itemServiceStart: startService (new Intent(this, typeof(UpdaterService)))	
 case R.id.itemServiceStop: stopService (new Intent(this, typeof(UpdaterService)))	
 case R.id.itemPrefs: startActivity(new Intent(this, typeof(PrefsActivity)))	
 }	
 true	
 }

class UpdaterService extends Service	
{	
 override onBind(Intent intent)	
 {	
 }	
!
 override onCreate()	
 { 	
 super.onCreate	
 }	
!
 override onStartCommand(Intent intent, int flags, int startId)	
 { 	
 super.onStartCommand(intent, flags, startId)	
 START_STICKY;	
 }	
!
 override onDestroy()	
 { 	
 super.onDestroy	
 }	
}

• Threads can be
modelled as
lambda in Xtend
using ‘as
Runnable’ type
specified

• This enables
considerable
brevity/flexibility

class UpdaterService extends Service	
{	
 val DELAY = 10000	
 var running = false 	
 var Thread updateThread	
 	
 var updater = [| 	
 while (!Thread.currentThread().isInterrupted() && running)	
 {	
 try	
 {	
 Thread.sleep(DELAY);	
 }	
 catch (InterruptedException e)	
 {}	
 }] as Runnable	
 	
 override onCreate()	
 {	
 updateThread = new Thread(updater)	
 super.onCreate	
 }	
!
 override onStartCommand(Intent intent, int flags, int startId)	
 {	
 super.onStartCommand(intent, flags, startId)	
 running = true	
 updateThread.start	
 START_STICKY;	
 }	
!
 override onDestroy()	
 {	
 super.onDestroy	
 running = false	
 updateThread.interrupt	
 }	
}

class UpdaterService extends Service	
{	
 val DELAY = 10000	
 var running = false	
 	
 var Thread updateThread	
 var TwitterAPI twitter	
 var List<Twitter.Status> timeline;	
 	
 var updater = [| 	
 while (!Thread.currentThread().isInterrupted() && running)	
 {	
 try	
 {	
 timeline = twitter.getFriendsTimeline()	
 timeline.forEach[Log.d("YAMBA", String.format("%s: %s", it.user.name, it.text));]	
 Thread.sleep(DELAY);	
 }	
 catch (TwitterException e)	
 {	
 Log.e("YAMBA", "Failed to connect to twitter service", e); 	
 }	
 catch (InterruptedException e)	
 {}	
 }] as Runnable	
!
...	
}

• General purpose
BackgroundService
Class

• Can be used by any
application

• Encapsulate simple
delay/wakeup cycle

abstract class BackgroundService extends Service	
{	
 val DELAY = 10000	
 var running = false 	
 var Thread updateThread	
 	
 var updater = [| 	
 while (!Thread.currentThread().isInterrupted() && running)	
 {	
 try	
 {	
 this.doBackgroundTask()	
 Thread.sleep(DELAY);	
 }	
 catch (InterruptedException e)	
 {}	
 }] as Runnable	
 	
 override onBind(Intent intent)	
 {	
 null	
 } 	!
 def abstract void doBackgroundTask()	
 	
 def startBackgroundTask()	
 {	
 running = true	
 updateThread.start	
 }	
 def stopBackgroundTask()	
 {	
 running = false	
 updateThread.interrupt	
 }	
 override onCreate()	
 {	
 updateThread = new Thread(updater)	
 super.onCreate	
 }	
}

• UpdaterService
simplified with
doBackground
started on a
different thread

class UpdaterService extends BackgroundService	
{	
 var TwitterAPI twitter	
 var List<Twitter.Status> timeline;	
 	
 override onBind(Intent intent)	
 {	
 null	
 } 	!
 override def void doBackgroundTask()	
 {	
 try	
 {	
 timeline = twitter.getFriendsTimeline()	
 timeline.forEach[Log.d("YAMBA", String.format("%s: %s", it.user.name, it.text))]	
 }	
 catch (TwitterException e)	
 {	
 Log.e("YAMBA", "Failed to connect to twitter service", e); 	
 }	
 }	
 	
 override onCreate()	
 {	
 super.onCreate	
 var app = getApplication() as YambaApplication	
 this.twitter = app.twitter	
 }	!
 override onStartCommand(Intent intent, int flags, int startId)	
 {	
 super.onStartCommand(intent, flags, startId)	
 startBackgroundTask	
 START_STICKY;	
 }	!
 override onDestroy()	
 {	
 super.onDestroy	
 stopBackgroundTask	
 }	
}

Except where otherwise noted, this content is
licensed under a Creative Commons
Attribution-NonCommercial 3.0 License.

!
For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

