
Produced
by

Department of Computing, Maths & Physics

Waterford Institute of Technology
http://www.wit.ie

http://elearning.wit.ie

MSc in Computer Science

Design Patterns

Eamonn de Leastar (edeleastar@wit.ie)

!

mailto:edleastar@wit.ie

Yamba

• A - Enable Simple
Tweet + timeline
update on
background thread

• B - Move
background thread
to an Android
Service + restructure
application to use
Lambdas +
Command pattern

• C - replace custom
event mechanism
with generic
Broadcast Receivers

Xtend version
Encapsulated as

3 Labs

BroadcastReciever

• A broadcast receiver is a component that responds to system-wide
broadcast announcements.

• Many broadcasts originate from the system—for example, a
broadcast announcing that the screen has turned off, the battery is
low, or a picture was captured.

• Apps can also initiate broadcasts—for example, to let other apps
know that some data has been downloaded to the device and is
available for them to use.

• A broadcast receiver is implemented as a subclass of
BroadcastReceiver and each broadcast is delivered as an Intent
object.

LocalBroadcastManager

• Helper to register for and send broadcasts of Intents to local
objects within your process. This is has a number of advantages
over sending global broadcasts with sendBroadcast(Intent):

• You know that the data you are broadcasting won't leave
your app, so don't need to worry about leaking private data.

• It is not possible for other applications to send these
broadcasts to your app, so you don't need to worry about
having security holes they can exploit.

• It is more efficient than sending a global broadcast through
the system.

BootLoader

• Start the
service as soon
as the
application
phone is
turned on.

• Permissions
and receiver
must be
declared in
manifest

class BootReceiver extends BroadcastReceiver	
{	
 override onReceive(Context context, Intent intent) 	
 {	
 context.startService(new Intent(context, typeof(UpdaterService)))	
 }	
}

 <uses-permission android:name="android.permission.RECEIVE_BOOT_COMPLETED" />	
 <receiver android:name="com.marakana.yambax.BootReceiver">	
 <intent-filter>	
 <action android:name="android.intent.action.BOOT_COMPLETED" />	
 </intent-filter> 	
 </receiver>

NetworkReceiver
class NetworkReceiver extends BroadcastReceiver 	
{ 	
 override onReceive(Context context, Intent intent) 	
 {	
 val isNetworkDown = intent.getBooleanExtra(ConnectivityManager.EXTRA_NO_CONNECTIVITY, false); 	
 	
 if (isNetworkDown) 	
 {	
 if (YambaApplication.serviceRunning)	
 {	
 Log.d("YAMBA", "onReceive: NOT connected, stopping UpdaterService");	
 context.stopService(new Intent(context, typeof(UpdaterService)))	
 }	
 }	
 else 	
 {	
 if (!YambaApplication.serviceRunning)	
 {	
 Log.d("YAMBA", "onReceive: connected, starting UpdaterService");	
 context.startService(new Intent(context, typeof(UpdaterService)))	
 }	
 }	
 }	
}

• Triggered whenever network is enabled/disabled

• Use this event to start/stop UpdaterService

UpdaterService - Change to use BroadcastReciever

• Define some identifiers for the events
class UpdaterService extends BackgroundService	
{	
 public static final String NEW_STATUS_INTENT = "com.marakana.yamba.NEW_STATUS"	
 public static final String SEND_TIMELINE_NOTIFICATIONS = "com.marakana.yamba.SEND_TIMELINE_NOTIFICATIONS";	
 public static final String RECEIVE_TIMELINE_NOTIFICATIONS = "com.marakana.yamba.RECEIVE_TIMELINE_NOTIFICATIONS"	

 override def void doBackgroundTask()	
 {	
 ...	
 val List<Twitter.Status> timeline = twitter.getFriendsTimeline	
 newTweets = if (app.timeline.size == 0) timeline else timeline.filter [it.id > app.timeline.get(0).id] 	
 ...	
 app.updateTimeline(newTweets)	
 sendBroadcast(new Intent(NEW_STATUS_INTENT), RECEIVE_TIMELINE_NOTIFICATIONS); 	
 ...	
 }

• sendBroadcast (just the event, not the data)

TimelineReceiver BroadCastReciever

• This receiver will be
triggered when new
status updates arrive

class TimelineReceiver extends BroadcastReceiver	
{	
 var TimelineActivity timelineActivity	
 	
 new (TimelineActivity activity)	
 {	
 	 timelineActivity = activity;	
 }	
 	
 override onReceive(Context context, Intent intent) 	
 {	
 	 timelineActivity.timelineAdapter.notifyDataSetChanged	
 }	
}

TimelineActivity

• When TimelineActivity resumes, register to receive UpdaterService
events

• When paused, unregister…

class TimelineActivity extends BaseActivity	
{ 	
 @Property TimelineAdapter timelineAdapter	
 var TimelineReceiver receiver	
 var IntentFilter filter	
 	
 override onCreate(Bundle savedInstanceState)	
 {	
 ...	
 receiver = new TimelineReceiver (this)	
 filter = new IntentFilter(UpdaterService.NEW_STATUS_INTENT)	
 }	
 	
 override onResume()	
 {	
 super.onResume	
 super.registerReceiver(receiver, filter, UpdaterService.SEND_TIMELINE_NOTIFICATIONS, null);	
 }	
 	
 override onPause() 	
 {	
 super.onPause();	
 unregisterReceiver(receiver) 	
 }

Except where otherwise noted, this content is
licensed under a Creative Commons
Attribution-NonCommercial 3.0 License.

!
For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

