
Produced
by

Department of Computing, Maths & Physics

Waterford Institute of Technology
http://www.wit.ie

http://elearning.wit.ie

MSc in Computer Science

Design Patterns

Eamonn de Leastar (edeleastar@wit.ie)

!

mailto:edleastar@wit.ie

Intent

• Compose objects into tree structures to represent part-whole hierarchies.

• Composite lets clients treat individual objects and compositions of objects
uniformly.

2

Motivation (1)

• Graphics drawing editors let users build complex diagrams out of simple
components.

• Components can be grouped to form larger components, which can in
turn be further grouped.

• A simple implementation could define classes for graphical primitives such as
Text and Lines plus other classes that act as containers for these primitives.

• Code that uses these classes must treat primitive and container objects
differently, even if most of the time the user treats them identically.

• Having to distinguish these objects makes the application more complex.

• The Composite pattern describes how to use recursive composition so that
clients don't have to make this distinction.

3

Motivation (2)

4

Motivation (2)
• The key to the Composite pattern is an abstract class that represents both

primitives and their containers.

• For the graphics system, this class is Graphic. Graphic declares

operations like draw() that are specific to graphical objects. It may declare
operations that all composite objects share (perhaps for accessing and
managing its children).

• The subclasses Line, Rectangle, and Text define primitive graphical objects.

• These classes implement Draw to draw lines, rectangles, and text,

respectively. Since primitive graphics have no child graphics, none of
these subclasses implements child-related operations.

• The Picture class defines an aggregate of Graphic objects.

• Picture implements Draw to call Draw on its children, and it implements

child-related operations accordingly.

• Because the Picture interface conforms to the Graphic interface, Picture

objects can compose other Pictures recursively

5

Motivation (3)

6

Applicability

• To represent part-whole hierarchies of objects.

• To enable clients to ignore the difference between compositions of objects
and individual objects.

• Clients will treat all objects in the composite structure uniformly.

7

Structure (1)

8

Structure (2)

9

Participants
• Component (Graphic)

• declares the interface for objects in the composition.

• implements default behaviour for the interface common to all classes, as

appropriate.

• (optional) declares an interface for accessing and managing its child

components.

• (optional) defines an interface for accessing a component's parent in the

recursive structure, and implements it if that's appropriate.

• Leaf (Rectangle, Line, Text, etc.)

• represents leaf objects in the composition. A leaf has no children.

• defines behaviour for primitive objects in the composition.

• Composite (Picture)

• defines behaviour for components having children.

• stores child components.

• implements child-related operations in the Component interface.

• Client

• manipulates objects in the composition through the Component interface.

10

Collaborations

• Clients use the Component class interface to interact with objects in the
composite structure.

• If the recipient is a Leaf, then the request is handled directly.

• If the recipient is a Composite, then it usually forwards requests to its child
components, possibly performing additional operations before and/or after
forwarding

11

Consequences (1)

• Defines class hierarchies consisting of primitive objects and composite
objects.

• Primitive objects can be composed into more complex objects, which in
turn can be composed, and so on recursively.

• Wherever client code expects a primitive object, it can also take a
composite object.

• Makes the client simple.

• Clients can treat composite structures and individual objects uniformly.

• Clients normally don't know (and shouldn't care) whether they're dealing
with a leaf or a composite component.

• This simplifies client code, because it avoids having to write tag-and-case-
statement-style functions over the classes that define the composition.

12

Consequences (2)

• Makes it easier to add new kinds of components.

• Newly defined Composite or Leaf subclasses work automatically with
existing structures and client code.

• Clients don't have to be changed for new Component classes.

• Can make your design overly general.

• The disadvantage of making it easy to add new components is that it
makes it harder to restrict the components of a composite.

• Sometimes you want a composite to have only certain components. With
Composite, you can't rely on the type system to enforce those constraints
for you. You'll have to use run-time checks instead.

13

public class Graphic	
{	
 protected int x;	
 protected int y;	
!
 Graphic(int x, int y)	
 {	
 this.x = x;	
 this.y = y;	
 }	
!
 public void draw()	
 {	
 System.out.print("Origin: X = " + x + ", Y = " + y + ": ");	
 }	
!
 public void move(int newX, int newY)	
 {	
 x = newX;	
 y = newY;	
 }	
}	

Graphic

14

public class Line extends Graphic	
{	
 private int endX;	
 private int endY;	
!
 public Line(int startX, int startY, int endX, int endY)	
 {	
 super(startX, startY);	
 this.endX = endX;	
 this.endY = endY;	
 }	
!
 public void draw()	
 {	
 super.draw();	
 System.out.println("line to X = " + endX + ", Y = " + endY);	
 }	
}	

Line

15

public class Rectangle extends Graphic	
{	
 private int width;	
 private int height;	
!
 public Rectangle(int X, int Y, int width, int height)	
 {	
 super(X, Y);	
 this.width = width;	
 this.height = height;	
 }	
!
 public void draw()	
 {	
 super.draw();	
 System.out.println("Recangle: width = " + width + ", height = " + height);	
 }	
}	

Rectangle

16

public class Picture extends Graphic	
{	
 private Collection<Graphic> graphics;	
!
 public Picture(int x, int y)	
 {	
 super(x, y);	
 graphics = new ArrayList<Graphic>();	
 }	
!
 void add(Graphic graphic)	
 {	
 graphics.add(graphic);	
 }	
!
 void remove(Graphic graphic)	
 {	
 graphics.remove(graphic);	
 }	
!
 ...

Picture

17

 public void draw()	
 {	
 System.out.print("Picture ");	
 super.draw();	
 System.out.println();	
!
 for (Graphic graphic : graphics)	
 {	
 graphic.draw();	
 }	
 }	
!
 public void move(int newX, int newY)	
 {	
 super.move(newX, newY);	
!
 for (Graphic graphic : graphics)	
 {	
 graphic.move(newX, newY);	
 }	
 }	
}	

public class TestGraphic extends TestCase	
{	
 private Picture mainGraphic;	
 private Picture subGraphic1;	
 private Picture subGraphic2;	
 private Line line1;	
 private Line line2;	
 private Text text1;	
 private Text text2;	
 private Rectangle rect1;	
 private Rectangle rect2;	
!
 public void setUp()	
 {	
 mainGraphic = new Picture(10, 10);	
!
 subGraphic1 = new Picture(11, 11);	
 subGraphic2 = new Picture(12, 12);	
!
 line1 = new Line(13, 13, 14, 14);	
 line2 = new Line(15, 15, 16, 16);	
!
 text1 = new Text(17, 17, "this is text 1");	
 text2 = new Text(18, 18, "this is text 2");	
!
 rect1 = new Rectangle(19, 19, 20, 20);	
 rect2 = new Rectangle(21, 21, 22, 22);	
 }	

TestGraphic(1)

18

 public void testDraw()	
 {	
 System.out.println("Draw Graphics directly:");	
 line1.draw();	
 line2.draw();	
 text1.draw();	
 text2.draw();	
 rect1.draw();	
 rect2.draw();	
 System.out.println("done.");	
 }	
!
 public void testMainComposite()	
 {	
 mainGraphic.add(line1);	
 mainGraphic.add(line2);	
 mainGraphic.add(text1);	
 mainGraphic.add(text2);	
 mainGraphic.add(rect1);	
 mainGraphic.add(rect2);	
!
 mainGraphic.draw();	
 System.out.println("done.");	
 }

TestGraphic(2)

19

 public void testSubComposites()	
 {	
 subGraphic1.add(line1);	
 subGraphic1.add(line2);	
!
 subGraphic2.add(text1);	
 subGraphic2.add(text2);	
!
 mainGraphic.add(subGraphic1);	
 mainGraphic.add(subGraphic2);	
 mainGraphic.add(rect1);	
 mainGraphic.add(rect2);	
!
 mainGraphic.draw();	
 System.out.println("done.");	
 }

 public void testMove()	
 {	
 subGraphic1.add(line1);	
 subGraphic1.add(line2);	
 subGraphic2.add(text1);	
 subGraphic2.add(text2);	
 mainGraphic.add(subGraphic1);	
 mainGraphic.add(subGraphic2);	
 mainGraphic.add(rect1);	
 mainGraphic.add(rect2);	
!
 mainGraphic.draw();	
 System.out.println("done.");	
!
 mainGraphic.move(0, 0);	
 mainGraphic.draw();	
 System.out.println("done.");	
 }	
}	

Implementation - Explicit parent

• Maintaining references from child components to their parent can simplify
the traversal and management of a composite structure:

• The parent reference simplifies moving up the structure and deleting a

component

• The usual place to define the parent reference is in the Component

class. Leaf and Composite classes can inherit the reference and the
operations that manage it.

• With parent references, it's essential to maintain the invariant that all
children of a composite have as their parent the composite that in turn has
them as children.

• The easiest way to ensure this is to change a component's parent only

when it's being added or removed from a composite.

• If this can be implemented once in the Add and Remove operations of

the Composite class, then it can be inherited by all the subclasses, and
the invariant will be maintained automatically.

20

Implementation – Component

• A goal Composite is to make clients unaware of the specific Leaf or
Composite they're using.

• Therefore Component should define as many common operations for
Composite and Leaf classes as possible.

• Component can provide default implementations, and Leaf and Composite
subclasses will override them.

• However, this goal may conflict with the principle of class hierarchy
design that says a class should only define operations that are
meaningful to its subclasses.

• Some operations that Component supports that don't seem to make sense
for Leaf classes.

• How can Component provide a default implementation for them? …

21

Implementation – Component

• The interface for accessing children is a fundamental part of a Composite
class but not necessarily Leaf classes.

• View a Leaf as a Component that never has children, then define a
default operation for child access in the Component class that never
returns any children.

• Leaf classes can use the default implementation, but Composite
classes will reimplement it to return their children.

22

Implementation – Child

• Although Composite implements add() and remove() an important issue is
where are these declared:

• In the Component and make them meaningful for Leaf classes

• In Composite and its subclasses

• Trade-off between safety and transparency:

• In Component gives transparency, as all components can be treated
uniformly. It costs in safety, however, because clients may try to do
meaningless things like add and remove objects from leaves.

• In Composite gives safety, because any attempt to add or remove objects
from leaves will be caught at compile-time. But some transparency is lost,
as leaves and composites have different interfaces.

23

class Component 	
{	
 //...	
 Composite getComposite() 	
 { 	
 return null; 	
 }	
 //...	
}	
 	
class Composite extends Component	
{	
 Composite getComposite()	
 {	
 return this; 	
 }	
}	
 	
class Leaf : public Component 	
{	
 //...	
}

Implementation – Child

• One approach is to declare an
operation Composite
getComposite() in the
Component class.

• Component provides a default
operation that returns null.

• The Composite class redefines
this operation to return itself
through the this reference

24

Composite File System Example

• Filesystem & Composite Pattern

• java.io.File

• Composite Pattern

• Eager & Lazy versions

25

File System

• A file system is a domain that can be
elegantly modeled using the Composite
Pattern.

• Each Node in the structure is either a file or
a directory.

• A File is a Leaf node

• A Directory is an “internal” node i.e. a node
that has children - a Composite

• These children may be files, or directories.

26

java.file.io

• File class can be viewed as modeling a node in a file system tree

27

Composite Methods

28

public class Component	
{	
 protected File file;	
 	
 public Component (File file)	
 {	
 this.file = file;	
 }	
 	
 public boolean hasChildren()	
 {	
 return false;	
 } 	
 	
 public int getNumberChildren()	
 {	
 return 0;	
 }	
 	
 public Component getChild (int index)	
 {	
 return null;	
 }	
 	
 public String toString()	
 {	
 return file.getName();	
 }	
}

Composite Pattern

29

public class Leaf extends Component	
{	
 public Leaf(File file)	
 {	
 super (file);	
 }	
}

public class Composite extends Component	
{	
 public Composite(File file)	
 {	
 super(file);	
 }	
!
 public boolean hasChildren()	
 {	
 return file.isDirectory();	
 }	
!
 public int getNumberChildren()	
 {	
 return file.listFiles().length;	
 }	
!
 public Component getChild(int index)	
 {	
 File childFile = file.listFiles()[index];	
 if (childFile.isDirectory())	
 {	
 return new Composite(childFile);	
 }	
 else	
 {	
 return new Leaf(childFile);	
 }	
 }	
}

Composite Class
- Lazy Version

• Constructor merely stores the
file reference.

• File system is only traversed if
the getChild() method is called.

30

public class Explorer	
{	
 private Composite root;	
!
 public Explorer(String path)	
 {	
 File file = new File(path);	
 root = new Composite(file);	
 }	
!
 public void print(int level)	
 {	
 visit(root, level);	
 }	
 	
 private void visit(Component node, int level)	
 {	
 String format = "%" + level*2 + "s%s";	
 System.out.println(String.format(format, " ", node.toString()));	
 if (node.hasChildren())	
 {	
 level++;	
 for (int i = 0; i < node.getNumberChildren(); i++)	
 {	
 Component child = node.getChild(i);	
 visit(child, level);	
 }	
 }	
 }	
!
 public static void main(String[] args)	
 {	
 Explorer explorer = new Explorer("/Test");	
 explorer.print(1);	
 }	
}

Command
Line Explorer

• Explorer constructor
takes the path to the root
of the file system to be
explored.

• A single root object is
created.

• visit() traverses this tree,
printing each file name,
suitably indented.

31

public class EagerComposite extends Component	
{	
 private List<Component> components;	
 	
 public EagerComposite(File file)	
 {	
 super(file);	
 components = new ArrayList<Component>();	
 for (File eachFile : file.listFiles())	
 {	
 if (eachFile.isDirectory())	
 {	
 components.add(new EagerComposite(eachFile));	
 }	
 else	
 {	
 components.add(new Leaf(eachFile));	
 }	
 }	
 }	
!
 public boolean hasChildren()	
 {	
 return !components.isEmpty();	
 }	
!
 public int getNumberChildren()	
 {	
 return components.size();	
 }	
!
 public Component getChild(int index)	
 {	
 return components.get(index);	
 }	
}

Composite Class
- Eager Version

• Constructor takes a single “root”
from a file system.

• Fills its components collection
with Leafs (for files) and
Composites (for directories).

• Once constructor has
completed, the full filesystem
(from root) will have been
traversed.

32

Except where otherwise noted, this content is
licensed under a Creative Commons
Attribution-NonCommercial 3.0 License.

!
For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

