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Early History: IFIPS & GKS

• IFIPS (International Federation for Information Processing Societies)(1973) 
formed two committees to come up with a standard graphics API

• Graphical Kernel System (GKS) -2D

• Core - Both 2D and 3D

• GKS adopted as IS0 and later ANSI standard (1980s)

• GKS not easily extended to 3D (GKS-3D)

• Far behind hardware development
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PHIGS & X

• Programmers Hierarchical Graphics System (PHIGS)

• Arose from CAD community

• Database model with retained graphics (structures)

• X Window System

• DEC/MIT effort

• Client-server architecture with graphics
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SGI and GL

• Silicon Graphics (SGI) revolutionized the graphics workstation by 
implementing the pipeline in hardware (1982)

• To access the system, application programmers used a library called GL

• With GL, it was relatively simple to program three dimensional interactive 
applications 
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OpenGL

• The success of GL lead to OpenGL (1992), a platform-independent API that 
was 

• Easy to use

• Close enough to the hardware to get excellent performance

• Focus on rendering

• Omitted windowing and input to avoid window system dependencies 
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Directx

• The first version of DirectX was released in September 1995 as the Windows 
Games SDK. 

• It was the Win32 replacement for the DCI and WinG APIs for Windows 3.1

• Allowed all versions of Microsoft Windows, starting with Windows 95, to 
incorporate high-performance multimedia

• DirectX 2.0 became a component of Windows itself with the releases of 
Windows 95 OSR2 and Windows NT 4.0 in mid-1996.

• Current Version - Directx 11 (For Windows 8)
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What Is OpenGL?

• OpenGL is strictly defined as “a software interface to graphics hardware.” In 
essence, it is a 3D graphics and modeling library that is highly portable and 
very fast

• OpenGL is not a programming language like C or C++. It is more like the C 
runtime library, which provides some prepackaged functionality

• OpenGL is intended for use with computer hardware that is designed and 
optimized for the display and manipulation of 3D graphics
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OpenGL vs Directx
• Motivation:

• OpenGL  is designed to be a 3D accelerated hardware rendering system 
that may be emulated in software. Expects the implementation of OpenGL 
to manage hardware resources.

• Direct3D is designed to virtualize 3D hardware interface, expects the 
application to manage hardware resources

• Design:
• OpenGL is a much more general purpose 3D API, so it provides features 

that aren't necessarily exclusive towards any particular kind of user.
• DirectX was an API designed for low-level, high-performance hardware 

access for the purpose of game development. 
• Implementation : 

• OpenGL drivers consequently more complex to implement that Directx 
Drivers. However, The two APIs provide nearly the same level of 
functionality

• Usage: 
• OpenGL- professional graphics market: computer animated movies, and 

scientific visualisation
• Directx - Games
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How Does OpenGL Work? 

• OpenGL is a procedural rather than a descriptive graphics API. 

• Instead of describing the scene and how it should appear, the programmer 
actually prescribes the steps necessary to achieve a certain appearance or 
effect. 

• These “steps” involve calls to the many OpenGL commands.

• These commands are used to draw graphics primitives such as points, lines, 
and polygons in three dimensions. 

• In addition, OpenGL supports lighting and shading, texture mapping, 
blending, transparency, animation, and many other special effects and 
capabilities.
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How Does OpenGL Work? 

• OpenGL does not include any functions for window management, user 
interaction, or file I/O. 

• Each host environment (such as Mac OS X or Microsoft Windows) has its own 
functions for this purpose and is responsible for implementing some means of 
handing over to OpenGL the drawing control of a window.

• There is no “OpenGL file format” for models or virtual environments. 
Programmers construct these environments to suit their own high-level needs 
and then carefully program them using the lower-level OpenGL commands.
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Generic vs Hardware Implementations

• A generic implementation is a software implementation.

• Hardware implementations are created for a specific hardware device, such as 
a graphics card or game console.

• A generic implementation can technically run just about anywhere as long as 
the system can display the generated graphics image.

• A software implementation of OpenGL takes graphics requests from an 
application and constructs (rasterizes) a color image of the 3D graphics.

• http://www.mesa3d.org/
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Generic Implementations
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• The typical program calls many functions, some of which 
the programmer creates and some of which are provided 
by the operating system or the programming language’s 
runtime library. 

• Windows applications wanting to create output onscreen 
usually call a Windows API called the graphics device 
interface (GDI). 

• The GDI contains methods that allow you to write text in a 
window, draw simple 2D lines etc.



Generic Implementations

• Microsoft has shipped its software implementation with every version of 
Windows NT since version 3.5 and Windows 95 (Service Release 2 and later). 
Windows 2000 and XP also contain support for a generic implementation of 
OpenGL.

• During the height of the so-called “API Wars,” SGI released a software 
implementation of OpenGL for Windows that greatly outperformed Microsoft’s 
implementation. 

• MESA 3D is another “unofficial” OpenGL software implementation that is 
widely supported in the open-source community. 

• Mesa 3D is not an OpenGL license, so it is an “OpenGL work-alike” rather 
than an official implementation
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Hardware 
Implementations
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• A hardware implementation of OpenGL usually takes 
the form of a graphics card driver.

• OpenGL API calls are passed to a hardware driver. 
This driver does not pass its output to the Windows 
GDI for display; the driver interfaces directly with the 
graphics display hardware.

• A hardware implementation is often referred to as an 
accelerated implementation because hardware-
assisted 3D graphics usually far outperform software-
only implementations.



The Pipeline
• The word pipeline is used to describe a process that can take two or more 

distinct stages or steps.

• As an application makes OpenGL API function calls, the commands are 
placed in a command buffer. 

• This buffer eventually fills with commands, vertex data, texture data, and so 
on. 

• When the buffer is flushed, either programmatically or by the driver’s design, 
the commands and data are passed to the next stage in the pipeline.
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The Pipeline

• “Transform and lighting” to be a mathematically intensive stage where points 
used to describe an object’s geometry are recalculated for the given object’s 
location and orientation. 

• The rasterizer actually creates the color image from the geometric, color, and 
texture data.

• The image is then placed in the frame buffer. The frame buffer is the memory 
of the graphics display device, which means the image is displayed on your 
screen.
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The Pipeline

• Early OpenGL hardware accelerators were nothing more than fast rasterizers.. 
The host system’s CPU did transform and lighting in a software 
implementation of that portion of the pipeline. 

• Higher-end (more expensive) accelerators had transform and lighting on the 
graphics accelerator -> higher performance.

• Even most low-end consumer hardware today has the transform and lighting 
stage in hardware. 

• The net effect of this arrangement is that higher detailed models and more 
complex graphics are possible at real-time rendering rates on inexpensive 
consumer hardware.

• Games and applications developers can capitalize on this effect, yielding far 
more detailed and visually rich environments.
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