
OpenGL Background

Scope

• What Is OpenGL?

• Evolution

• Directx vs OpenGL

• How Does OpenGL Work?

• Generic Implementations

• Hardware Implementations

• The Pipeline

2

Early History: IFIPS & GKS

• IFIPS (International Federation for Information Processing Societies)(1973)
formed two committees to come up with a standard graphics API

• Graphical Kernel System (GKS) -2D

• Core - Both 2D and 3D

• GKS adopted as IS0 and later ANSI standard (1980s)

• GKS not easily extended to 3D (GKS-3D)

• Far behind hardware development

3

PHIGS & X

• Programmers Hierarchical Graphics System (PHIGS)

• Arose from CAD community

• Database model with retained graphics (structures)

• X Window System

• DEC/MIT effort

• Client-server architecture with graphics

4

SGI and GL

• Silicon Graphics (SGI) revolutionized the graphics workstation by
implementing the pipeline in hardware (1982)

• To access the system, application programmers used a library called GL

• With GL, it was relatively simple to program three dimensional interactive
applications

5

OpenGL

• The success of GL lead to OpenGL (1992), a platform-independent API that
was

• Easy to use

• Close enough to the hardware to get excellent performance

• Focus on rendering

• Omitted windowing and input to avoid window system dependencies

6

Directx

• The first version of DirectX was released in September 1995 as the Windows
Games SDK.

• It was the Win32 replacement for the DCI and WinG APIs for Windows 3.1

• Allowed all versions of Microsoft Windows, starting with Windows 95, to
incorporate high-performance multimedia

• DirectX 2.0 became a component of Windows itself with the releases of
Windows 95 OSR2 and Windows NT 4.0 in mid-1996.

• Current Version - Directx 11 (For Windows 8)

7

http://en.wikipedia.org/wiki/Windows_API
http://en.wikipedia.org/wiki/Windows_API
http://en.wikipedia.org/wiki/WinG
http://en.wikipedia.org/wiki/WinG
http://en.wikipedia.org/wiki/Windows_3.1
http://en.wikipedia.org/wiki/Windows_3.1
http://en.wikipedia.org/wiki/Windows_95
http://en.wikipedia.org/wiki/Windows_95
http://en.wikipedia.org/wiki/Windows_NT_4.0
http://en.wikipedia.org/wiki/Windows_NT_4.0

What Is OpenGL?

• OpenGL is strictly defined as “a software interface to graphics hardware.” In
essence, it is a 3D graphics and modeling library that is highly portable and
very fast

• OpenGL is not a programming language like C or C++. It is more like the C
runtime library, which provides some prepackaged functionality

• OpenGL is intended for use with computer hardware that is designed and
optimized for the display and manipulation of 3D graphics

8

OpenGL vs Directx
• Motivation:

• OpenGL is designed to be a 3D accelerated hardware rendering system
that may be emulated in software. Expects the implementation of OpenGL
to manage hardware resources.

• Direct3D is designed to virtualize 3D hardware interface, expects the
application to manage hardware resources

• Design:
• OpenGL is a much more general purpose 3D API, so it provides features

that aren't necessarily exclusive towards any particular kind of user.
• DirectX was an API designed for low-level, high-performance hardware

access for the purpose of game development.
• Implementation :

• OpenGL drivers consequently more complex to implement that Directx
Drivers. However, The two APIs provide nearly the same level of
functionality

• Usage:
• OpenGL- professional graphics market: computer animated movies, and

scientific visualisation
• Directx - Games

9

How Does OpenGL Work?

• OpenGL is a procedural rather than a descriptive graphics API.

• Instead of describing the scene and how it should appear, the programmer
actually prescribes the steps necessary to achieve a certain appearance or
effect.

• These “steps” involve calls to the many OpenGL commands.

• These commands are used to draw graphics primitives such as points, lines,
and polygons in three dimensions.

• In addition, OpenGL supports lighting and shading, texture mapping,
blending, transparency, animation, and many other special effects and
capabilities.

10

How Does OpenGL Work?

• OpenGL does not include any functions for window management, user
interaction, or file I/O.

• Each host environment (such as Mac OS X or Microsoft Windows) has its own
functions for this purpose and is responsible for implementing some means of
handing over to OpenGL the drawing control of a window.

• There is no “OpenGL file format” for models or virtual environments.
Programmers construct these environments to suit their own high-level needs
and then carefully program them using the lower-level OpenGL commands.

11

Generic vs Hardware Implementations

• A generic implementation is a software implementation.

• Hardware implementations are created for a specific hardware device, such as
a graphics card or game console.

• A generic implementation can technically run just about anywhere as long as
the system can display the generated graphics image.

• A software implementation of OpenGL takes graphics requests from an
application and constructs (rasterizes) a color image of the 3D graphics.

• http://www.mesa3d.org/

12

http://www.mesa3d.org
http://www.mesa3d.org

Generic Implementations

13

• The typical program calls many functions, some of which
the programmer creates and some of which are provided
by the operating system or the programming language’s
runtime library.

• Windows applications wanting to create output onscreen
usually call a Windows API called the graphics device
interface (GDI).

• The GDI contains methods that allow you to write text in a
window, draw simple 2D lines etc.

Generic Implementations

• Microsoft has shipped its software implementation with every version of
Windows NT since version 3.5 and Windows 95 (Service Release 2 and later).
Windows 2000 and XP also contain support for a generic implementation of
OpenGL.

• During the height of the so-called “API Wars,” SGI released a software
implementation of OpenGL for Windows that greatly outperformed Microsoft’s
implementation.

• MESA 3D is another “unofficial” OpenGL software implementation that is
widely supported in the open-source community.

• Mesa 3D is not an OpenGL license, so it is an “OpenGL work-alike” rather
than an official implementation

14

Hardware
Implementations

15

• A hardware implementation of OpenGL usually takes
the form of a graphics card driver.

• OpenGL API calls are passed to a hardware driver.
This driver does not pass its output to the Windows
GDI for display; the driver interfaces directly with the
graphics display hardware.

• A hardware implementation is often referred to as an
accelerated implementation because hardware-
assisted 3D graphics usually far outperform software-
only implementations.

The Pipeline
• The word pipeline is used to describe a process that can take two or more

distinct stages or steps.

• As an application makes OpenGL API function calls, the commands are
placed in a command buffer.

• This buffer eventually fills with commands, vertex data, texture data, and so
on.

• When the buffer is flushed, either programmatically or by the driver’s design,
the commands and data are passed to the next stage in the pipeline.

16

The Pipeline

• “Transform and lighting” to be a mathematically intensive stage where points
used to describe an object’s geometry are recalculated for the given object’s
location and orientation.

• The rasterizer actually creates the color image from the geometric, color, and
texture data.

• The image is then placed in the frame buffer. The frame buffer is the memory
of the graphics display device, which means the image is displayed on your
screen.

17

The Pipeline

• Early OpenGL hardware accelerators were nothing more than fast rasterizers..
The host system’s CPU did transform and lighting in a software
implementation of that portion of the pipeline.

• Higher-end (more expensive) accelerators had transform and lighting on the
graphics accelerator -> higher performance.

• Even most low-end consumer hardware today has the transform and lighting
stage in hardware.

• The net effect of this arrangement is that higher detailed models and more
complex graphics are possible at real-time rendering rates on inexpensive
consumer hardware.

• Games and applications developers can capitalize on this effect, yielding far
more detailed and visually rich environments.

18

