
OpenGL API Introduction

Agenda

• Structure of Implementation

• Paths and Setup

• API, Data Types & Function Name Conventions

• GLUT

• Buffers & Colours

2

OpenGL: An API, Not a Language

• OpenGL is not a programming language; it is an application programming
interface (API).

• An OpenGL application is a program written in some programming language
(such as C or C++) that makes calls to one or more of the OpenGL libraries.

• Does not mean program uses OpenGL exclusively to do drawing:

• It might combine the best features of two different graphics packages.

• Or it might use OpenGL for only a few specific tasks and environment-
specific graphics (such as the Windows GDI) for others.

3

Implementations
• Although OpenGL is a “standard” programming library, this library has many

implementations and versions.

• On Microsoft Windows the implementation is in the opengl32.dll dynamic link
library, located in the Windows system directory.

• The OpenGL library is usually accompanied by the OpenGL utility library
(GLU), which on Windows is in glu32.dll,.

• GLU is a set of utility functions that perform common tasks, such as special
matrix calculations, or provide support for common types of curves and
surfaces.

• On Mac OS X, OpenGL and the GLU libraries are both included in the OpenGL
Framework.

• The steps for setting up your compiler tools to use the correct OpenGL
headers and to link to the correct OpenGL libraries vary from tool to tool and
from platform to platform.

4

#include<windows.h>
#include<gl/gl.h>
#include<gl/glu.h>

Include Paths

• On all platforms, the prototypes for all
OpenGL functions, types, and macros
are contained (by convention) in the
header file gl.h.

• The utility library functions are
prototyped in a different file, glu.h.

• These files are usually located in a
special directory in your include path,
set up automatically when you install
your development tools.

5

#include <Carbon/Carbon.h>
#include <OpenGL/gl.h>
#include <OpenGL/glu.h>

Variations
on

Header
setup

6

// Bring in OpenGL
// Windows
#ifdef WIN32
#include <windows.h>! ! // Must have for Windows platform builds
#include "glee.h"! ! ! // OpenGL Extension "autoloader"
#include <gl\gl.h>! ! ! // Microsoft OpenGL headers
#include <gl\glu.h>!! ! // OpenGL Utilities
#include "glut.h"! ! ! // Glut (Free-Glut on Windows)
#endif

// Mac OS X
#ifdef __APPLE__
#include <Carbon/Carbon.h> // Brings in most Apple specific stuff
#include "glee.h"! ! // OpenGL Extension "autoloader"
#include <OpenGL/gl.h>!! // Apple OpenGL haders (version depends
 //on OS X SDK version)
#include <OpenGL/glu.h>! ! // OpenGL Utilities
#include <Glut/glut.h>!! // Apples Implementation of GLUT

// Just ignore sleep on Apple
#define Sleep(x)

#endif

#ifdef linux
#include "GLee.h"
#include <GL/gl.h>
#include <GL/glu.h>
#include <glut.h>
#include <stdlib.h>
#endif

API Specifics
• OpenGL applies some standard rules to the way functions were named and

variables were declared.

• The API is simple and clean and easy for vendors to extend. OpenGL tries to
avoid as much “policy” as possible.

• Policy: assumptions that the designers make about how programmers will
use the API.

• Eg:

• assuming that you always specify vertex data as floating-point values,

• assuming that fog is always enabled before any rendering occurs,

• assuming that all objects in a scene are affected by the same lighting
parameters

7

API Specifics

• This philosophy has contributed to the longevity and evolution of OpenGL.

• OpenGL’s basic API has shown surprising resilience to new unanticipated
features.

• The ability to compile ten-year-old source code with little to no changes is a
substantial advantage to application developers, and OpenGL has managed
for years to add new features with as little impact on old code as possible.

• Some versions of OpenGL offer “lean and mean” profiles, where some older
features and models may eventually be dropped - eg OpenGL ES

8

Data Types

• To make it easier to port OpenGL code from one platform to another, OpenGL
defines its own data types.

• These data types map to normal C/C++ data types that you can use instead,
if you want.

• The various compilers and environments, however, have their own rules for
the size and memory layout of various variable types.

• By using the OpenGL defined variable types, you can insulate your code from
these types of changes.

9

Data Types

10

Denoting Data Types

• All data types start with a GL to denote OpenGL.

• Most are followed by their corresponding C data types (byte,short,int,float,
and so on).

• Some have a u first to denote an unsigned data type, such as ubyte to denote
an unsigned byte.

• For some uses, a more descriptive name is given, such as size to denote a
value of length or depth.

• The clamp designation is a hint that the value is expected to be “clamped” to
the range 0.0–1.0. T

11

Function-Naming Conventions

• OpenGL functions follow a naming convention that tells you which library the
function is from and how many and what types of arguments the function
takes.

12

floats & doubles

• Any conformant C/C++ compiler will assume that any floating-point literal
value is of type double unless explicitly told otherwise via the suffix
mechanism.

• When you’re using literals for floating-point arguments, if you don’t specify
that these arguments are of type float instead of double, many compilers will
issue a warning while compiling because it detects that you are passing a
double to a function defined to accept only floats,

• This results in a possible loss of precision, not to mention a costly runtime
conversion from double to float.

13

Platform Independence

• OpenGL is a powerful and sophisticated API for creating 3D graphics:

• > 300 functions that cover everything from setting material colors and
reflective properties to doing rotations and complex coordinate
transformations.

• Does not address

• to window or screen management.

• keyboard input or mouse interaction.

• Primary goals was for OpenGL to be a platform independent abstraction of
graphics hardware.

• Creating and managing windows and polling for user input are inherently
operating system related tasks

14

Using GLUT

• GLUT stands for OpenGL utility toolkit (not to be confused with the standard
GLU—OpenGL utility library).

• GLUT is widely available on most UNIX distributions (including Linux), and
is natively supported by Mac OS X, where Apple maintains and extends
the library.

• On Windows, it has been replaced with Freeglut

• GLUT eliminates the need to know and understand basic GUI programming
on any specific platform

15

First Program

16

#include "libopengl.h"

void renderScene(void)
{
 glClear(GL_COLOR_BUFFER_BIT);

 glFlush();
}

void setupRC(void)
{
 glClearColor(0.0f, 0.0f, 1.0f, 1.0f);
}

int main(int argc, char* argv[])
{
 glutInit(&argc, argv);
 glutInitDisplayMode(GLUT_SINGLE | GLUT_RGBA);
 glutCreateWindow("Hello OpenGL");
 glutDisplayFunc(renderScene);

 setupRC();

 glutMainLoop();

 return 0;
}

• This simple program
contains four GLUT
library functions (prefixed
with glut) and three“real”
OpenGL functions
(prefixed with gl).

Header

17

#include "libopengl.h"

#ifdef WIN32
#include <windows.h>
#include <gl\glu.h>
#include "glut.h"
#endif

#ifdef __APPLE__
#include <OpenGL/gl.h>
#include <OpenGL/glu.h>
#include <Glut/glut.h>
#endif

glutInit()

• Console-mode C and C++
programs always start
execution with the function
main.

• The first line of code in main is
a call to glutInit, which simply
passes along the command-line
parameters and initializes the
GLUT library.

18

//..

int main(int argc, char* argv[])
{
 glutInit(&argc, argv);
 //...
}

glutInitDisplayMode()
• The flags here tell it to use a single-

buffered window (GLUT_SINGLE)
and to use RGBA colormode
(GLUT_RGBA).

• A single-buffered window means
that all drawing commands are
performed on the window displayed.

• An alternative is a double-buffered
window, where the drawing
commands are actually executed on
an offscreen buffer and then quickly
swapped into view on the window.

• RGBA color mode means that you
specify colors by supplying separate
intensities of red, green, blue, and
alpha components.

19

//..

int main(int argc, char* argv[])
{
 glutInit(&argc, argv);
 glutInitDisplayMode(GLUT_SINGLE | GLUT_RGBA);
 //...
}

glutCreateWindow()

• Call to the GLUT library actually
creates the window on the screen.

• The single argument to
glutCreateWindow is the caption for
the window’s title bar.

20

//..

int main(int argc, char* argv[])
{
 glutInit(&argc, argv);
 glutInitDisplayMode(GLUT_SINGLE | GLUT_RGBA);
 glutCreateWindow("Hello OpenGL");
 //...
}

glutDisplayFunc()
• Establishes the previously defined

function renderScene as the display
callback function.

• This means that GLUT calls the
function pointed to here whenever
the window needs to be drawn.

• This call occurs when the window is
first displayed or when the window
is resized or uncovered..

• This is the place to put OpenGL
rendering function calls.

21

//..

int main(int argc, char* argv[])
{
 glutInit(&argc, argv);
 glutInitDisplayMode(GLUT_SINGLE | GLUT_RGBA);
 glutCreateWindow("Hello OpenGL");
 glutDisplayFunc(renderScene);
 //...
}

void renderScene(void)
{
 glClear(GL_COLOR_BUFFER_BIT);

 glFlush();
}

Set up Rendering Context()

• Do any OpenGL initialization that
should be performed before
render-ing.

• Many of the OpenGL states need
to be set only once and do not
need to be reset every time you
render a frame (a screen full of
graphics).

22

//..

int main(int argc, char* argv[])
{
 glutInit(&argc, argv);
 glutInitDisplayMode(GLUT_SINGLE | GLUT_RGBA);
 glutCreateWindow("Hello OpenGL");
 glutDisplayFunc(renderScene);
 setupRC();
 //...
}

void setupRC(void)
{
 glClearColor(0.0f, 0.0f, 1.0f, 1.0f);
}

 glutMainLoop()
• This function starts the GLUT

framework running.

• glutMainLoop never returns after
it is called until the main window
is closed

• Needs to be called only once
from an application.

• It processes all the operating
system–specific
messages,keystrokes, and so on
until you terminate the program.

23

//..

int main(int argc, char* argv[])
{
 glutInit(&argc, argv);
 glutInitDisplayMode(GLUT_SINGLE | GLUT_RGBA);
 glutCreateWindow("Hello OpenGL");
 glutDisplayFunc(renderScene);
 setupRC();
 glutMainLoop();
 //...
}

OpenGL Graphics Calls -glClearColor

• glClearColor sets the color used for clearing the window

• GLclampf is defined as a float.

• A single color is represented as a mixture of red, green, and blue components.

• The range for each component can vary from 0.0 to 1.0. thus yielding a virtually
infinite number of potential colors.

• Practically speaking, color output is limited on most devices to 24 bits (16
million colors) total.

• OpenGL takes this color value and converts it internally to the nearest possible
exact match with the available video hardware

24

void setupRC(void)
{
 glClearColor(0.0f, 0.0f, 1.0f, 1.0f);
}

void glClearColor (GLclampf red, GLclampf green, GLclampf blue, GLclampf alpha);

Common Colour Values

25

aplha parameter

• The last argument to glClearColor is the alpha component, which is used for
blending and special effects such as transparency.

• Transparency refers to an object’s capability to allow light to pass through it.

• E.g. Suppose you would like to create a piece of red stained glass, and a blue
light happens to be shining behind it. The blue light affects the appearance of
the red in the glass (blue + red = purple).

• You can use the alpha component value to generate a red color that is
semitransparent so that it works like a sheet of glass—an object behind it
shows through.

26

void glClearColor (GLclampf red, GLclampf green, GLclampf blue, GLclampf alpha);

Clearing the Color Buffer

• A buffer is a storage area for image information. glClearfunction clears a
particular buffer or combination of buffers.

• The red, green, and blue components of a drawing are usually collectively
referred to as the color buffer or pixel buffer.

• The Colour buffer is the place where the displayed image is stored internally
and that clearing the buffer with glClear removes the last drawing from the
window. Y

• More than one kind of buffer (color, depth, stencil, and accumulation) is
available inOpenGL

• The term framebuffer refers to all these buffers collectively since they work in
tandem.

27

void renderScene(void)
{
 glClear(GL_COLOR_BUFFER_BIT);

 glFlush();
}

 glFlush()

• Causes any unexecuted OpenGL commands to be executed.

• OpenGL uses a rendering pipeline that processes commands sequentially.

• OpenGL commands and statements often are queued up until the OpenGL
driver processes several “commands” at once.

• This design improves performance because communication with hardware is
inherently slow.

• Making one trip to the hardware with a comprehensive dataset is much faster
than making several smaller trips for each command or instruction.

28

void renderScene(void)
{
 glClear(GL_COLOR_BUFFER_BIT);

 glFlush();
}

