
First Projection

Learning Outcomes

• Review the glRect method

• Understand how to compute a window Aspect Ratio

• Understand the role of the glutReshapeFunc()

• Have seen an orthographic projection in action using the glOrtho() function

2

Draw a Rectangle

• glColor3f() selects a color in the same
manner as glClearColor, but no alpha
translucency component needs to be
specified (the default value for alpha is
1.0 for completely opaque)

• glRectf() function takes floating-point
arguments, represent two coordinate
pairs, (x1, y1) and (x2, y2)

• The first pair represents the upper-left
corner of the rectangle, and the
second pair represents the lower-right
corner.

3

void renderScene(void)
{
 glClear(GL_COLOR_BUFFER_BIT);

 glColor3f(1.0f, 0.0f, 0.0f);

 glRectf(-25.0f, 25.0f, 25.0f, -25.0f);

 glFlush();
}

Scaling to the Window

• In most windowing environments, the user can at any time change the size
and dimensions of the window.

• Even if you are writing a game that always runs in fullscreen mode, the
window is still considered to change size once—when it is created.

• When this happens, the window usually responds by redrawing its contents,
taking into consideration the window’s new dimensions.

• May wish to scale the drawing to fit within the window,regardless of the size
of the drawing or window.

4

Aspect Ratio

• The aspect ratio is the ratio of the
number of pixels along a unit of
length in the vertical direction to
the number of pixels along the
same unit of length in the
horizontal direction.
• I.e. The width of the window

divided by the height.
• An aspect ratio of 1.0 defines a

square aspect ratio.
• An aspect ratio of 0.5 indicates

the width is half the height
• An aspect ratio of 2 indicates the

height is half the width

5

1

0.5

2

glutReshapeFunc()

• callback function for when ever
the window changes size (when it
is stretched, maximized, and so
on)

• The changeSize function
receives the new width and
height whenever the window size
changes.

• We can use this information to
modify the mapping of our
desired coordinate system to real
screen coordinates

6

int main(int argc, char* argv[])
{
 glutInit(&argc, argv);
 glutInitDisplayMode(GLUT_SINGLE | GLUT_RGBA);
 glutCreateWindow("Hello OpenGL");
 glutDisplayFunc(renderScene);

 glutReshapeFunc(changeSize);

 setupRC();

 glutMainLoop();

 return 0;
}

void changeSize(int w, int h)
{
 //...
}

changeSize

7

void changeSize(int w, int h)
{
 GLfloat aspectRatio;

 glViewport(0, 0, w, h);

 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();

 aspectRatio = (GLfloat) w / (GLfloat) h;
 if (w <= h)
 glOrtho(-100.0, 100.0, -100 / aspectRatio, 100.0 / aspectRatio, 1.0, -1.0);
 else
 glOrtho(-100.0 * aspectRatio, 100.0 * aspectRatio, -100.0, 100.0, 1.0, -1.0);

 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
}

Defining the Clipping Volume

• Define the clipping volume so that the aspect ratio remains square.

• If a viewport that is not square is mapped to a square clipping volume,the
image will be distorted.

• E.g, a viewport matching the window size and dimensions but mapped to a
square clipping volume would cause images to appear tall and thin in tall and
thin windows and wide and short in wide and short windows.

8

• The left and right values specify the minimum and
maximum coordinate value displayed along the
x-axis; bottom and top are for the y-axis.

• The near and far parameters are for the z-axis,
generally with negative values extending away
from the viewer

• Many graphics libraries use window
coordinates(pixels) for drawing commands.

• OpenGL allows us to use a floating-point (and
seemingly arbitrary) coordinate system for
rendering.

9

void glOrtho (GLdouble left, GLdouble right, GLdouble bottom, GLdouble top,
 GLdouble zNear, GLdouble zFar);

void changeSize(int w, int h)
{
 //...
 glOrtho(-100.0, 100.0, -100 / aspectRatio, 100.0 / aspectRatio, 1.0, -1.0);
 //..
}

glOrtho()

Keeping a Square Square - horizontal

• The clipping volume (visible coordinate space) is modified so that the left side
is always at x = –100 and the right side extends to 100

• Unless the window is wider than it is tall, in which case, the horizontal extent
is scaled by the aspect ratio of the window.

10

void changeSize(int w, int h)
{
 //...
 aspectRatio = (GLfloat) w / (GLfloat) h;
 if (w <= h)
 glOrtho(-100.0, 100.0, -100 / aspectRatio, 100.0 / aspectRatio, 1.0, -1.0);
 else
 glOrtho(-100.0 * aspectRatio, 100.0 * aspectRatio, -100.0, 100.0, 1.0, -1.0);

 //...
}

Keeping a Square Square - vertical
• Similarly, the bottom is always at y = –100 and extends upward to 100 unless

the window is taller than it is wide.

• In that case, the upper coordinate is scaled by the inverse of the aspect ratio.

• This serves to keep a square coordinate region 200×200 available (with 0,0 in
the center) regardless of the shape of the window

11

Example Values

12

aspect ratio:1 :width:200 :height:200
left:-100 :right-100: bottom:-100 top:100

 aspectRatio = (GLfloat) w / (GLfloat) h;
 if (w <= h)
 glOrtho(-100.0, 100.0, -100 / aspectRatio, 100.0 / aspectRatio, 1.0, -1.0);
 else
 glOrtho(-100.0 * aspectRatio, 100.0 * aspectRatio, -100.0, 100.0, 1.0, -1.0);

aspect ratio:0.5 :width:200 :height:400
left:-100 :right-100: bottom:-200 top:200

aspect ratio:2 :width:400 :height:200
left: -200 right:200 bottom:-100 :top-100:

glMatrixMode() &
glLoadIdentity()

• Matrices and the matrix stacks are part of the OpenGL Pipeline

• The projection matrix is the place where we actually define your viewing
volume.

• The first call to glLoadIdentity serves to “reset” the coordinate system before
any matrix manipulations are performed

• The last two calls indicate that all future transformations will affect what is
about to be drawn

13

void changeSize(int w, int h)
{
 //...
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();

 //...
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
}

