
Points, Circles & Lines

OpenGL

Learning Outcomes

• Understand the role of primitives & vertices in Opengl

• Be able to draw points and circles

• Understand how the point size it acquired and set

• Be able to draw individual lines, connected lines, line strips and loops

• Have seen line stippling

2

Pixels & Points

• Computer graphics at its simplest: Draw a point somewhere on the screen,
and make it a specific color.

• Build on this simple concept, to produce lines, polygons, circles, and other
shapes and graphics

• In OpenGL, we are not concerned with physical screen coordinates and
pixels, but rather positional coordinates in a viewing volume.

• OpenGL worries about how to get your points, lines, etc projected from your
established 3D space to the 2D image on a screen

3

Viewing Volume

• Consists of an area enclosed a
Cartesian coordinate space
that ranges from –100 to+100
on all three axes—x, y, and z.

• We established this volume
with a call to glOrtho.

4

void setupRC(void)
{
 glClearColor(0.0f, 0.0f, 1.0f, 1.0f);
 glOrtho (-100.0f, 100.0f, -100.0f, 100.0f, -100.0f, 100.0f);
}

A 3D Point: The Vertex

• Function glVertex— one of the most used
functions in all the OpenGL API.

• The “lowest common denominator” of all
the OpenGL primitives: a single point in
space.

• The glVertex function can take from one (a
pointer) to four parameters of any numerical
type,from bytes to doubles, subject to the
naming conventions

5

glVertex3f(50.0f, 50.0f, 0.0f);

Primitives

• Is this vertex a point that should just be plotted or is it the endpoint of a line
or the corner of a cube?

• The geometric definition of a vertex is not just a point in space, but rather the
point at which an intersection of two lines or curves occurs.

• This is the essence of primitives.

• A primitive is simply the interpretation of a set or list of vertices into some
shape drawn on the screen.

• There are 10 primitives in OpenGL, from a simple point drawn in space to a
closed polygon of any number of sides.

6

Drawing Points

• One way to draw primitives is to use the
glBegin command to tell OpenGL to begin
interpreting a list of vertices as a particular
primitive.

• You then end the list of vertices for that
primitive with the glEnd command.

• glBegin, GL_POINTS tells OpenGL that the
succeeding vertices are to be interpreted
and drawn as points.

7

void renderScene(void)
{
 glClear(GL_COLOR_BUFFER_BIT);

 glBegin(GL_POINTS);
 glVertex3f(0.0f, 0.0f, 0.0f);
 glVertex3f(50.0f, 40.0f, 0.0f);
 glVertex3f(50.0f, 50.0f, 50.0f);
 glEnd();

 glutSwapBuffers();
}

sin / cos

8

• A circle drawn in the xy plane and a line segment from the
origin (0,0) to any point on the circle makes an angle (a) with
the x-axis.

• For any given angle, the trigonometric functions sine and
cosine return the x and y values of the point on the circle.

• By stepping a variable that represents the angle all the way
around the origin, we can calculate all the points on the
circle.

• The C runtime functions sin() and cos() accept angle values
measured in radians instead of degrees. There are 2*PI
radians in a circle.

Drawing a Circle

• Calculates the x
and y coordinates
for an angle that
spins between
0°and 360°

• Expressed
programmatically in
radians rather than
degrees

9

void renderScene(void)
{
 GLfloat x, y, angle;

 glClear(GL_COLOR_BUFFER_BIT);

 glBegin(GL_POINTS);
 for (angle = 0.0f; angle <= (2.0f * GL_PI); angle += 0.01f)
 {
 x = 50.0f * sin(angle);
 y = 50.0f * cos(angle);
 glVertex3f(x, y, 0.0f);
 }
 glEnd();

 glutSwapBuffers();
}

Setting the Point Size
• When you draw a single point,

the size of the point is one pixel
by default.

• Change this size with the
function glPointSize:

• It specifies the approximate
diameter in pixels of the point
drawn.

• Not all point sizes are supported,
however, and you should make
sure the point size you specify is
available

10

void glPointSize(GLfloat size);

GLfloat sizes[2];
GLfloat step;
GLfloat curSize;

void retupRC()
{
 //...
 glGetFloatv(GL_POINT_SIZE_RANGE,sizes);
 glGetFloatv(GL_POI¯T_SIZE_GRANULARITY,&step);
 curSize = sizes[0];
 //...
}

• glPointSize must be called outside the glBegin/glEnd statements.

• Using a point size larger supported OpenGL uses the largest available point size
but does not keep growing - the range are clamped to the range

• Larger point sizes are represented simply by larger cubes. This is the default
behavior, but it typically is undesirable for many application.

• Need Antialiasing, a technique used to smooth out jagged edges and round out
corners 11

void renderScene(void)
{
 GLfloat x, y, angle;

 glClear(GL_COLOR_BUFFER_BIT);

 for (angle = 0.0f; angle <= (2.0f * GL_PI); angle += 0.1f)
 {
 x = 50.0f * sin(angle);
 y = 50.0f * cos(angle);
 glPointSize(curSize);
 glBegin(GL_POINTS);
 glVertex3f(x, y, 0.0f);
 glEnd();
 curSize+=step;
 }
 glutSwapBuffers();
}

Drawing Lines

• GL_POINTS: for each vertex
specified, it draws a point.

• GL_LINES: to specify two vertices
and draw a line between them.

• two vertices specify a single
primitive

• If you specify an odd number of
vertices for GL_LINES, the last
vertex is just ignored

12

void renderScene(void)
{
 glClear(GL_COLOR_BUFFER_BIT);

 glBegin(GL_LINES);
 glVertex3f(0.0f, 0.0f, 0.0f);
 glVertex3f(50.0f, 50.0f, 0.0f);
 glEnd();

 glutSwapBuffers();
}

Connected Lines

13

void renderScene(void)
{
 glClear(GL_COLOR_BUFFER_BIT);

 glBegin(GL_LINES);
 glVertex3f(0.0f, 0.0f, 0.0f);
 glVertex3f(50.0f, 50.0f, 0.0f);
 glVertex3f(50.0f, 50.0f, 0.0f);
 glVertex3f(50.0f, 100.0f, 0.0f);
 glEnd();

 glutSwapBuffers();
}

Line Strips

• GL_LINE_STRIP, a line is drawn from one
vertex to the next in a continuous segment

14

void renderScene(void)
{
 glClear(GL_COLOR_BUFFER_BIT);

 glBegin(GL_LINE_STRIP);
 glVertex3f(0.0f, 0.0f, 0.0f);
 glVertex3f(50.0f, 50.0f, 0.0f);
 glVertex3f(50.0f, 100.0f, 0.0f);
 glEnd();

 glutSwapBuffers();
}

Line Loops

• LINE_LOOP: behaves just like
GL_LINE_STRIP, but one final
line is drawn between the last
vertex specified and the first
one specified

15

void renderScene(void)
{
 glClear(GL_COLOR_BUFFER_BIT);

 glBegin(GL_LINE_LOOP);
 glVertex3f(0.0f, 0.0f, 0.0f);
 glVertex3f(50.0f, 50.0f, 0.0f);
 glVertex3f(50.0f, 100.0f, 0.0f);
 glEnd();

 glutSwapBuffers();
}

Approximating Curves with Straight Lines

• Plot points along a
circle-shaped path.

• Can push the points
closer and closer
together (by setting
smaller values for the
angle increment) to
create a smooth
curve instead of the
broken points

• Can be slow for
larger and more
complex curves with
thousands of points.

16

void renderScene(void)
{
 GLfloat x, y, angle;

 glClear(GL_COLOR_BUFFER_BIT);

 glBegin(GL_POINTS);
 for (angle = 0.0f; angle <= (2.0f * GL_PI); angle += 0.01f)
 {
 x = 50.0f * sin(angle);
 y = 50.0f * cos(angle);
 glVertex3f(x, y, 0.0f);
 }
 glEnd();

 glutSwapBuffers();
}

Connect the dots

• Approximating a
curve using
GL_LINE_STRIP or
GL_LINE_LOOP to
connect-the-dots.

• As the dots move
closer together, a
smoother curve
materializes without
you having to specify
all the points.

17

void renderScene(void)
{
 GLfloat x, y, angle;

 glClear(GL_COLOR_BUFFER_BIT);

 glBegin(GL_LINE_LOOP);
 for (angle = 0.0f; angle <= (2.0f * GL_PI); angle += 0.1f)
 {
 x = 50.0f * sin(angle);
 y = 50.0f * cos(angle);
 glVertex3f(x, y, 0.0f);
 }
 glEnd();

 glutSwapBuffers();
}

Setting the Line Width

• Specify various line widths
when drawing lines by using
the glLineWidth function.

• The glLineWidthfunction
takes a single parameter that
specifies the approximate
width, in pixels, of the line
drawn.

• Just as with point sizes, not
all line widths are supported,
and you should make sure
that the line width you want
to specify is available.

18

GLfloat fSizes[2];!
GLfloat fCurrSize;!

void retupRC()
{
 //...

 glGetFloatv(GL_LINE_WIDTH_RANGE,fSizes);
 fCurrSize = fSizes[0];
}

void glLineWidth (GLfloat width);

Lines Example

19

void renderScene(void)
{
!GLfloat y;! ! ! ! !
!!
 glClear(GL_COLOR_BUFFER_BIT);

!for(y = -90.0f; y < 90.0f; y += 20.0f)
 {
!! glLineWidth(fCurrSize);

!! glBegin(GL_LINES);
 glVertex2f(-80.0f, y);
 glVertex2f(80.0f, y);!
!! glEnd();

!! fCurrSize += 1.0f;
 }

!glutSwapBuffers();
}

Line Stippling

• In addition to changing line widths, you
can create lines with a dotted or dashed
pattern, called stippling

• The pattern parameter is a 16-bit value
that specifies a pattern to use when
drawing the lines.

• Each bit represents a section of the line
segment that is either on or off.

• By default,each bit corresponds to a
single pixel, but the factor parameter
serves as a multiplier to increase the
width of the pattern.

20

void glLineStipple (GLint factor, GLushort pattern);

Stipple Example

21

void renderScene(void)
{
!GLfloat y;! ! ! ! !
!GLint factor = 3;! ! !
!GLushort pattern = 0x5555;!

!glClear(GL_COLOR_BUFFER_BIT);

!for(y = -90.0f; y < 90.0f; y += 20.0f)
 {
!! glLineStipple(factor,pattern);

 glBegin(GL_LINES);
 glVertex2f(-80.0f, y);
 glVertex2f(80.0f, y);!
!! glEnd();

!! factor++;
 }
!glutSwapBuffers();
}

void retupRC()
{
 //..

 glEnable(GL_LINE_STIPPLE);
}

