
Triangles

OpenGL

1

Learning Outcomes

• On completion of this lession you should:

• Understand the TRIANGLES primitive

• Understand the meaning of “Winding” and distinguish between clockwise
and counterclockwise winding

• Be able to use the glFrontFace amd glPolyGoneMode functions in this
context

• Have used TRIANGLE_FAN and TRIANGLE_STRIP primitives

2

2

Drawing Triangles

• To draw a solid surface, you need more than just points and lines; you need
polygons.

• A polygon is a closed shape that may or may not be filled with the currently
selected color, and it is the basis of all solid-object composition in OpenGL.

• The simplest polygon possible is the triangle, with only three sides.

• The GL_TRIANGLES primitive draws triangles by connecting three vertices
together

3

3

Triangles

4

void renderScene(void)
{
 glClear(GL_COLOR_BUFFER_BIT);

! glBegin(GL_TRIANGLES);

 glVertex2f(0.0f, 0.0f); // V0
 glVertex2f(25.0f, 25.0f); // V1
 glVertex2f(50.0f, 0.0f); // V2

 glVertex2f(-50.0f, 0.0f); // V3
 glVertex2f(-75.0f, 50.0f); // V4
 glVertex2f(-25.0f, 0.0f); // V5

 glEnd();

!glutSwapBuffers();
}

4

Winding

• Notice the arrows on the lines that
connect the vertices.

• When the first triangle is drawn, the lines
are drawn from V0 to V1, then to V2, and
finally back to V0 to close the triangle.

• This path is in the order in which the
vertices are specified - clockwise in this
example.

• The combination of order and direction in
which the vertices are specified is called
winding.

5

5

Clockwise and Counterclockwise Winding
• OpenGL, by default, considers polygons

that have counterclockwise winding to be
front facing.

• This means that the triangle on the left
shows the front of the triangle, and the one
on the right shows the back of the triangle.

• We may want to give the front and back of
a polygon different physical
characteristics. e.g. hide the back of a
polygon altogether or give it a different
color and reflective property

• In order to keep the winding of all polygons
in a scene consistent, using front-facing
polygons to draw the outside surface of
any solid objects

6

6

Default Front/Back

• If you need to reverse the default behavior of OpenGL, you can do so by
calling the following function:

• glFrontFace(GL_CW);

• The GL_CW parameter tells OpenGL that clockwise-wound polygons are to
be considered front facing. To change back to counterclockwise winding for
the front face, use GL_CCW.

7

7

Triangle Strips

• For many surfaces and shapes, you need to draw several connected
triangles.

• Can be drawn as a strip of connected triangles with the
GL_TRIANGLE_STRIP primitive.

• Progression of a strip of three triangles specified by a set of five
vertices numbered V0 through V4. The vertices are not necessarily
traversed in the same order in which they were specified.

• Preserve the winding (counterclockwise) of each triangle. The
pattern is V0, V1, V2; then V2, V1,V3; then V2, V3, V4; and so on

8

8

Triangle Strips

• Advantages:

1.Only need to specify only a single point
for each additional triangle.

2.Fewer vertices means a faster transfer
from computer’s memory to graphics
card and fewer vertex transformations

9

void renderScene(void)
{
 glClear(GL_COLOR_BUFFER_BIT);
 glBegin(GL_TRIANGLE_STRIP);
 glVertex2f(0.0f, 0.0f); // V0
 glVertex2f(50.0f, 0.0f); // V1
 glVertex2f(25.0f, 25.0f); // V2
 glVertex2f(75.0f, 25.0f); // V3
 glVertex2f(50.0f, 50.0f); // V4
 glEnd();

!glutSwapBuffers();
}

void retupRC()
{
 //...
 glPolygonMode(GL_FRONT,GL_LINE);
}

9

Triangle Fans (1)

• Produce a group of connected triangles that fan around a central point

• The first vertex, V0, forms the origin of the fan.

• After the first three vertices are used to draw the initial triangle, all subsequent
vertices are used with the origin (V0) and the vertex immediately preceding it
(Vn–1) to form the next triangle.

10

10

Triangle Fans (2)

11

void renderScene(void)
{
 glClear(GL_COLOR_BUFFER_BIT);
 glBegin(GL_TRIANGLE_FAN);
 glVertex2f(0.0f, 0.0f);
 glVertex2f(0.0f, 50.0f);
 glVertex2f(25.0f, 30.0f);
 glVertex2f(40.0f, 0.0f);
 glVertex2f(25.0f, -30.0f);
 glEnd();

!glutSwapBuffers();
}

void retupRC()
{
 glClearColor(0.0f, 0.0f, 0.0f, 1.0f);

 glColor3f(0.0f, 1.0f, 0.0f);

 glOrtho (-100.0f, 100.0f, -100.0f, 100.0f, -100.0f, 100.0f);

 glPolygonMode(GL_FRONT,GL_LINE);
 glPolygonMode(GL_BACK,GL_LINE);
}

11

