
Depth Testing & Culling

OpenGL

Learning Outcomes

• Have constructed a solid 3D object

• Understand the Depth Testing model in OpenGL, the use of the Depth Buffer
and how to enable and disable it

• Have used Culling, have used it and understand its relationship to winding in
OpenGL

2

• Objective: use two triangle fans to create a cone.

• The first fan produces the cone shape, using the
first vertex as the point of the cone and there
remaining vertices as points along a circle farther
down the z-axis.

• The second fan forms a circle and lies entirely in
the x y plane, making up the bottom surface of the
cone.

3

4

void renderScene(void)
{

 glClear(GL_COLOR_BUFFER_BIT);

 drawCircleFan(0,0,75, 50);
 drawCircleFan(0,0,0, 50);

!glutSwapBuffers();
}

Hidden Surface Removal

• If we hold down one of the arrow keys to spin the cone around,

• Something unsettling: The cone appears to be swinging back and forth
plus and minus 180°, with the bottom of the cone always facing front, but
not rotating a full 360°

5lab04a_04a

Problem

• This wobbling happens because the bottom of the cone is drawn after the
sides of the cone are drawn.

• No matter how the cone is oriented, the bottom is drawn on top of it,
producing the “wobbling” illusion.

• In general if more than one object is drawn and one is in front of the other
(from the viewer’s perspective), the last object drawn still appears over the
previously drawn object.

6

Depth Testing

• Depth testing is an
effective technique for
hidden surface removal,
and OpenGL has functions
that do this behind the
scenes.

• This maneuver is
accomplished internally by
a depth buffer with storage
for a depth value for every
pixel on the screen.

7

1.When a pixel is drawn, it is assigned a value
(called the z value) that denotes its distance
from the viewer’s perspective.

2.When another pixel needs to be drawn to
that screen location, the new pixel’s z value
is compared to that of the pixel that is
already stored there.

3.If the new pixel’s z value is higher, it is
closer to the viewer and thus in front of the
previous pixel, so the previous pixel is
obscured by the new pixel.

4.If the new pixel’s z value is lower, it must be
behind the existing pixel and thus is not
obscured.

Depth Buffer

• The depth buffer is analogous to the color
buffer in that it contains information about the
distance of the pixels from the observer.

• This information is used to determine whether
any pixels are hidden by pixels closer to the
observe

8

1.Request a depth buffer
when you set up your
OpenGL window with
GLUT

2.Enable depth testing

3.The Depth buffer must
be cleared each time
the scene is rendered

9

int main(int argc, char* argv[])
{
 //...
 glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH);
 //...
}

void retupRC()
{
 //...
 glEnable(GL_DEPTH_TEST);
}

void renderScene(void)
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 //...
}

lab04a_04b

Culling: Hiding Surfaces for Performance

• There are obvious visual advantages to not drawing a surface that is
obstructed by another.

• Even so, you pay some performance overhead because every pixel drawn
must be compared with the previous pixel’s z value.

• Often it is known that a surface will never be drawn anyway, so why specify
it?

• Culling is the term used to describe the technique of eliminating geometry
that we know will never be seen.

• By not sending this geometry to your OpenGL driver and hardware, you can
make significant performance improvements.

10

Backface culling

• Eliminates the backsides of a surface

• The Cone is a closed surface, and we never
see the inside.

• OpenGL is actually (internally) drawing the
back sides of the far side of the cone and
then the front sides of the polygons facing us.

• Then, by a comparison of z buffer values, the
far side of the cone is either overwritten or
ignored

• If backface culling is enabled, then the back
sides of the polygons will not be drawn at all.

11

void retupRC()
{
 //...
 glEnable(GL_CULL_FACE);
}

Culling and Winding

• Care required to avoid culling the wrong
face

• Both fans are wound differently, so
culling produces incorrect results

12

void renderScene(void)
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 drawCircleFan(0,0,75, 50);
 drawCircleFan(0,0,0, 50);

!glutSwapBuffers();
}

void retupRC()
{
 //...
 glEnable(GL_CULL_FACE);
}

lab04a_05a

13

void renderScene(void)
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 glFrontFace(GL_CW);
 drawCircleFan(0,0,75, 50);
 glFrontFace(GL_CCW);
 drawCircleFan(0,0,0, 50);

!glutSwapBuffers();
}

lab04a_05b

No Culling, No Depth Testing

14

void retupRC()
{
 //...
 glPolygonMode(GL_FRONT,GL_FILL);
 glPolygonMode(GL_BACK, GL_FILL);
 glShadeModel(GL_FLAT);
 // glEnable(GL_DEPTH_TEST);
 // glEnable(GL_CULL_FACE);
}

lab04a_05c

Culling, No Depth Testing

15

void retupRC()
{
 //...

 glPolygonMode(GL_FRONT,GL_FILL);
 glPolygonMode(GL_BACK, GL_FILL);
 glShadeModel(GL_FLAT);
 //glEnable(GL_DEPTH_TEST);
 glEnable(GL_CULL_FACE);
}

lab04a_05d

Depth Testing, Culling & Winding
• OpenGL uses winding to determine

the front and back sides of polygons
and that it is important to keep the
polygons that define the outside of
our objects wound in a consistent
direction.

• This consistency is what allows us to
tell OpenGL to render only the front,
only the back, or both sides of
polygons.

• By eliminating the back sides of the
polygons, we can drastically reduce
the amount of processing necessary
to render the image.

• Even though depth testing will
eliminate the appearance of the
inside of objects, internally OpenGL
must take them into account unless
we explicitly tell it not to. 16

void renderScene(void)
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 glFrontFace(GL_CW);
 drawCircleFan(0,0,75, 50);
 glFrontFace(GL_CCW);
 drawCircleFan(0,0,0, 50);

! glutSwapBuffers();
}

void retupRC()
{
 //...
 glPolygonMode(GL_FRONT,GL_FILL);
 glPolygonMode(GL_BACK, GL_FILL);
 glShadeModel(GL_FLAT);
 glEnable(GL_DEPTH_TEST);
 glEnable(GL_CULL_FACE);
}

