
Transformations & Matrices

OpenGL

Learning Outcomes

• Have a deeper insight into the functioning of the Transformation Pipeline

• Have a clearer understanding of glTranslate, glRotate and glScale functions in
this context

• Understand usage of the identity matrix

• Be able to appreciate the difference between the projection and modelview
matrices.

2

The Role of Matrices

• An exceptionally powerful mathematical tool that greatly simplifies the
process of solving one or more equations with variables that have complex
relationships to each other.

• E.g. a point in space represented by x, y, and z coordinates, and need to
compute where that point is if you rotate it a number of degrees around some
arbitrary point and orientation.

• Use Matrices because the new x coordinate depends not only on the old x
coordinate and the other rotation parameters, but also on the y and z
coordinates.

3

The Matrix

• A set of numbers arranged in uniform rows and columns—in programming
terms, a two-dimensional array.

• Doesn’t have to be square, but each row or column must have the same
number of elements as every other row or column in the matrix.

• It is valid for a matrix to have a single column or row.

• A single row or column of numbers is also more simply called a vector

4

Scalars, Vectors & Matrices

• A scalar is just an ordinary single number used to represent magnitude or a
specific quantity

• Matrices can be multiplied and added together, but they can also be
multiplied by vectors and scalar values.

• Multiplying a point (a vector) by a matrix (a transformation) yields a new
transformed point (a vector).

5

The Transformation Pipeline

6

1.The vertex is converted to a 1×4 matrix in which the first three values are the x,
y, and z coordinates. The fourth number is a scaling factor that you can apply
manually by using the vertex functions that take four values. This is the w
coordinate, usually 1.0 by default

2.The vertex is then multiplied by the modelview matrix, which yields the
transformed eye coordinates.

3.The eye coordinates are then multiplied by the projection matrix to yield clip
coordinates - eliminating all data outside this clipping space

4.The clip coordinates are then divided by the w coordinate to yield normalized
device coordinates. The w value may have been modified by the projection
matrix or the modelview matrix, depending on the transformations that occurred

5.The coordinate triplet is mapped to a 2D plane by the viewport transformation.

7

Specifying the Projection Matrix

• “Load” the projection matrix by setting the MatrixMode to PROJECTION

• Specify Orthographic projection parameters

8

void retupRC()
{
 //...
 glMatrixMode(GL_PROJECTION);
 glOrtho (-20.0f, 20.0f, -20.0f, 20.0f, -20.0f, 20.0f);
 //...
}

The Modelview Matrix
• A a 4×4 matrix that represents the transformed coordinate system you are

using to place and orient your objects.

• The vertices you provide for your primitives are used as a single-column matrix
and multiplied by the modelview matrix to yield new transformed coordinates in
relation to the eye coordinate system.

• E.g. A matrix containing data for a single vertex is multiplied by the modelview
matrix to yield new eye coordinates. The vertex data is actually four elements
with an extra value, w, that represents a scaling factor. This value is set by
default to 1.0

9

Modelview Transformations

• Translation

• Rotation

• Scaling

10

Translation

• Draw a cube using the
GLUT library’s
glutWireCubefunction.

• A cube that measures 50
units on a side is then
centered at the origin

11

void renderScene(void)
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 glutWireCube(50.0f);

 glutSwapBuffers();
}

Move the Cube

• To move the cube up the y-axis
by 10 units before drawing it,

• multiply the modelview matrix
by a matrix that describes a
translation of 10 units up the
y-axis

• then do the drawing.

12

 // Construct a translation matrix for positive 10 Y
 ...
 // Multiply it by the modelview matrix
 ...
 // Draw the cube
!glutWireCube(50.0f);

Translation in OpenGL

• OpenGL provides a high-
level function that performs
this task.

• Takes as parameters the
amount to translate along
the x, y, and z directions.

• Constructs an appropriate
matrix and multiplies it
onto the current matrix
stack

13

void glTranslatef(GLfloat x, GLfloat y, GLfloat z);

void renderScene(void)
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 glTranslatef(0.0f, 10.0f, 0.0f);
 glutWireCube(50.0f);

 glutSwapBuffers();
}

Rotation

• To rotate an object about one of the three coordinate axes you have to devise
a rotation matrix.

• Performs a rotation around the vector specified by the x,y, and z arguments.

• The angle of rotation is in the counterclockwise direction measured in degrees
and specified by the argument angle.

14

glRotatef(GLfloat angle, GLfloat x, GLfloat y, GLfloat z);

• To see the axis of rotation, you can just draw a
line from the origin to the point represented by
(x,y,z).

15

void renderScene(void)
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 glBegin(GL_LINES);
 glVertex3f(0.0f, 0.0f, 0.0f);
 glVertex3f(100.0f, 100.0f, 100.0f);!
 glEnd();
 glRotatef(45.0f, 1.0f, 1.0f, 1.0f);
 glutWireCube(50.0f);

!glutSwapBuffers();
}

Scaling
• Changes the size of your object by expanding

or contracting all the vertices along the three
axes by the factors specified

• The function multiplies the x,y, and z values by
the scaling factors specified.

• E.g Produces a cube that is twice as large
along the x- and z-axes, but still the same
along the y-axis

16

glScalef(GLfloat x, GLfloat y, GLfloat z);

void renderScene(void)
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 glScalef(2.0f, 1.0f, 2.0f);
 glutWireCube(50.0f);

! glutSwapBuffers();
}

Current Modelview Matrix
• For each of these transformations, the appropriate matrix is

constructed and multiplied by the current modelview matrix.

• The new matrix then becomes the current modelview matrix, which is
then multiplied by the next transformation, and so on.

• Eg. Draw two spheres—one 10 units up the positive y-axis and one
10 units out the positive x-axis:

17

 glTranslatef(0.0f, 10.0f, 0.0f);
 glutSolidSphere(1.0f,15,15);
 glTranslatef(10.0f, 0.0f, 0.0f);
 glutSolidSphere(1.0f,15,15);

Cumulative Translations

• Each call to glTranslate is cumulative on the modelview
matrix, so the second call translates 10 units in the
positive x direction from the previous translation in the y
direction.

• You can make an extra call to glTranslate to back down
the y-axis 10 units in the negative direction, but this
makes some complex scenes difficult to code and
debug

18

 glTranslatef(0.0f, 10.0f, 0.0f);
 glutSolidSphere(1.0f,15,15);
 glTranslatef(10.0f, 0.0f, 0.0f);
 glutSolidSphere(1.0f,15,15);

 glTranslatef(0.0f, 10.0f, 0.0f);
 glutSolidSphere(1.0f,15,15);
 glTranslatef(0.0f, -10.0f, 0.0f);
 glTranslatef(10.0f, 0.0f, 0.0f);
 glutSolidSphere(1.0f,15,15);

Identity Matrix
• Reset the origin by loading the modelview matrix with the identity matrix.

• The identity matrix specifies that no transformation is to occur, in effect saying
that all the coordinates you specify when drawing are in eye coordinates.

• An identity matrix contains all 0s, with the exception of a diagonal row of 1s.
When this matrix is multiplied by any vertex matrix, the result is that the vertex
matrix is unchanged.

• Loading the Identity Matrix is resetting the modelview matrix to the origin.

19

glMatrixMode & glLoadIdentity
• The first line specifies that the current

operating matrix is the modelview matrix -
this remains the active matrix until you
change it.

• The second line loads the current matrix (in
this case, the modelview matrix) with the
identity matrix.

• The second call the glLoadIdentity() reset
the modelview matrix again, to the final two
calls operate with respect to the origin.

20

 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();

 glTranslatef(0.0f, 10.0f, 0.0f);
 glutSolidSphere(1.0f,15,15);

 glLoadIdentity();

 glTranslatef(10.0f, 0.0f, 0.0f);
 glutSolidSphere(1.0f,15,15);

