Transformations \& Matrices

OpenGL

Learning Outcomes

- Have a deeper insight into the functioning of the Transformation Pipeline
- Have a clearer understanding of glTranslate, gIRotate and gIScale functions in this context
- Understand usage of the identity matrix
- Be able to appreciate the difference between the projection and modelview matrices.

The Role of Matrices

- An exceptionally powerful mathematical tool that greatly simplifies the process of solving one or more equations with variables that have complex relationships to each other.
- E.g. a point in space represented by x, y, and z coordinates, and need to compute where that point is if you rotate it a number of degrees around some arbitrary point and orientation.
- Use Matrices because the new x coordinate depends not only on the old x coordinate and the other rotation parameters, but also on the y and z coordinates.

The Matrix

$$
\left[\begin{array}{lll}
1 & 4 & 7 \\
2 & 5 & 8 \\
3 & 6 & 9
\end{array}\right]\left[\begin{array}{cc}
0 & 42 \\
1.5 & 0.877 \\
2 & 14
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right]
$$

- A set of numbers arranged in uniform rows and columns-in programming terms, a two-dimensional array.
- Doesn't have to be square, but each row or column must have the same number of elements as every other row or column in the matrix.
- It is valid for a matrix to have a single column or row.
- A single row or column of numbers is also more simply called a vector

Scalars, Vectors \& Matrices

- A scalar is just an ordinary single number used to represent magnitude or a specific quantity
- Matrices can be multiplied and added together, but they can also be multiplied by vectors and scalar values.
- Multiplying a point (a vector) by a matrix (a transformation) yields a new transformed point (a vector).

The Transformation Pipeline

1.The vertex is converted to a 1×4 matrix in which the first three values are the x, y, and z coordinates. The fourth number is a scaling factor that you can apply manually by using the vertex functions that take four values. This is the w coordinate, usually 1.0 by default
2.The vertex is then multiplied by the modelview matrix, which yields the transformed eye coordinates.
3.The eye coordinates are then multiplied by the projection matrix to yield clip coordinates - eliminating all data outside this clipping space
4.The clip coordinates are then divided by the w coordinate to yield normalized device coordinates. The w value may have been modified by the projection matrix or the modelview matrix, depending on the transformations that occurred
5.The coordinate triplet is mapped to a 2D plane by the viewport transformation.

Specifying the Projection Matrix

```
void retupRC()
{
    //...
    glMatrixMode(GL_PROJECTION);
    glOrtho (-20.0f, 20.0f, -20.0f, 20.0f, -20.0f, 20.0f);
    //..
}
```

- "Load" the projection matrix by setting the MatrixMode to PROJECTION
- Specify Orthographic projection parameters

The Modelview Matrix

- A a 4×4 matrix that represents the transformed coordinate system you are using to place and orient your objects.
- The vertices you provide for your primitives are used as a single-column matrix and multiplied by the modelview matrix to yield new transformed coordinates in relation to the eye coordinate system.
- E.g. A matrix containing data for a single vertex is multiplied by the modelview matrix to yield new eye coordinates. The vertex data is actually four elements with an extra value, w , that represents a scaling factor. This value is set by default to 1.0

$$
\left[\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right]\left[\begin{array}{lll}
4 & \times 4 \\
M
\end{array}\right]=\left[\begin{array}{l}
x_{e} \\
y_{e} \\
z_{e} \\
W_{e}
\end{array}\right]
$$

Modelview Transformations

- Translation
- Rotation
- Scaling

Translation

- Draw a cube using the GLUT library's glutWireCubefunction.
- A cube that measures 50 units on a side is then centered at the origin

```
void renderScene(void)
{
    glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
    glutWireCube(50.0f);
    glutSwapBuffers();
}
```


Move the Cube

- To move the cube up the y-axis by 10 units before drawing it,
- multiply the modelview matrix by a matrix that describes a translation of 10 units up the y-axis

```
// Construct a translation matrix for positive 10 Y
// Multiply it by the modelview matrix
// Draw the cube
glutWireCube(50.0f);
```

- then do the drawing.

Translation in OpenGL

- OpenGL provides a highlevel function that performs this task.
void gITranslatef(GLfloat x, GLfloat y, GLfloat z);

- Takes as parameters the amount to translate along the x, y, and z directions.
- Constructs an appropriate matrix and multiplies it

```
void renderScene(void)
{
    glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
    glTranslatef(0.0f, 10.0f, 0.0f);
    glutWireCube(50.0f);
    glutSwapBuffers();
}
``` onto the current matrix stack

\section*{Rotation}
- To rotate an object about one of the three coordinate axes you have to devise a rotation matrix.
```

glRotatef(GLfloat angle, GLfloat x, GLfloat y, GLfloat z);

```
- Performs a rotation around the vector specified by the \(x, y\), and \(z\) arguments.
- The angle of rotation is in the counterclockwise direction measured in degrees and specified by the argument angle.
- To see the axis of rotation, you can just draw a line from the origin to the point represented by \((x, y, z)\).
```

void renderScene(void)
{
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glBegin(GL_LINES);
glVertex3f(0.0f, 0.0f, 0.0f);
glVertex3f(100.0f, 100.0f, 100.0f);
glEnd();
glRotatef(45.0f, 1.0f, 1.0f, 1.0f);
glutWireCube(50.0f);
glutSwapBuffers();
}

```


\section*{Scaling}
- Changes the size of your object by expanding or contracting all the vertices along the three axes by the factors specified
gIScalef(GLfloat x, GLfloat y, GLfloat z);
- The function multiplies the \(x, y\), and \(z\) values by the scaling factors specified.
- E.g Produces a cube that is twice as large along the \(x\) - and \(z\)-axes, but still the same along the \(y\)-axis
```

void renderScene(void)
{
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glScalef(2.0f, 1.0f, 2.0f);
glutWireCube(50.0f);
glutSwapBuffers();
}

```

\section*{Current Modelview Matrix}
- For each of these transformations, the appropriate matrix is constructed and multiplied by the current modelview matrix.
- The new matrix then becomes the current modelview matrix, which is then multiplied by the next transformation, and so on.
- Eg. Draw two spheres - one 10 units up the positive y-axis and one 10 units out the positive \(x\)-axis:
```

glTranslatef(0.0f, 10.0f, 0.0f);
glutSolidSphere(1.0f,15,15);
glTranslatef(10.0f, 0.0f, 0.0f);
glutSolidSphere(1.0f,15,15);

```


\section*{Cumulative Translations}
```

glTranslatef(0.0f, 10.0f, 0.0f);
glutSolidSphere(1.0f,15,15);
glTranslatef(10.0f, 0.0f, 0.0f);
glutSolidSphere(1.0f,15,15);

```
- Each call to gITranslate is cumulative on the modelview matrix, so the second call translates 10 units in the positive \(x\) direction from the previous translation in the \(y\) direction. the \(y\)-axis 10 units in the negative direction, but this makes some complex scenes difficult to code and debug

\section*{Identity Matrix}
- Reset the origin by loading the modelview matrix with the identity matrix.
- The identity matrix specifies that no transformation is to occur, in effect saying that all the coordinates you specify when drawing are in eye coordinates.
- An identity matrix contains all 0 s , with the exception of a diagonal row of 1 s . When this matrix is multiplied by any vertex matrix, the result is that the vertex matrix is unchanged.
\[
\left[\begin{array}{r}
8.0 \\
4.5 \\
-2.0 \\
1.0
\end{array}\right]\left[\begin{array}{cccc}
1.0 & 0 & 0 & 0 \\
0 & 1.0 & 0 & 0 \\
0 & 0 & 1.0 & 0 \\
0 & 0 & 0 & 1.0
\end{array}\right]=\left[\begin{array}{r}
8.0 \\
4.5 \\
-2.0 \\
1.0
\end{array}\right]
\]
- Loading the Identity Matrix is resetting the modelview matrix to the origin.

\section*{glMatrixMode \& glLoadldentity}
- The first line specifies that the current operating matrix is the modelview matrix this remains the active matrix until you change it.
- The second line loads the current matrix (in this case, the modelview matrix) with the
```

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslatef(0.0f, 10.0f, 0.0f);
glutSolidSphere(1.0f,15,15);
glLoadIdentity();
glTranslatef(10.0f, 0.0f, 0.0f);
glutSolidSphere(1.0f,15,15);

``` identity matrix.
- The second call the glLoadldentity) reset the modelview matrix again, to the final two calls operate with respect to the origin.
```

