
Quads, Quad Strips & Polygons

OpenGL

Learning Outcomes

• Have used Quadrilaterals, Quadrilateral strips and general purpose polygons.

• Understand the planar and convex rules for polygon construction

• Know how to turn off edges when rendering apparently convex polygons.

2

Other Primitives

• Triangles are the preferred primitive for object composition because most
OpenGL hardware specifically accelerates triangles, but they are not the only
primitives available.

• Some hardware provides for acceleration of other shapes as well, and
programmatically, using a general-purpose graphics primitive might be
simpler.

• These OpenGL primitives provide for rapid specification of:

• quadrilaterals

• quadrilateral strips

• general-purpose polygons

3

Quads
• If you add one more side to

a triangle, you get a
quadrilateral, or a four-
sided figure.

• OpenGL’s GL_QUADS
primitive draws a four-
sided polygon.

• This quad has a clockwise
winding.

• All four corners of the
quadrilateral must lie in a
plane (no bent quads).

4

void renderScene(void)
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 glBegin(GL_QUADS);! ! ! ! ! !
 glVertex3f(-50.0f, 0.0f, 0.0f);!! ! !
 glVertex3f(0.0f, 50.0f, 0.0f);!! ! !
 glVertex3f(50.0f, 0.0f, 0.0f);!! ! !
 glVertex3f(0.0f, -50.0f, 0.0f);!! !
!glEnd();

!glutSwapBuffers();
}

Quad Strip
• As you can for triangle strips, you can

specify a strip of connected quadrilaterals
with the GL_QUAD_STRIP primitive.

• Eg. a quad strip specified by six vertices.
• Note that these quad strips maintain a

clockwise winding.

5

void renderScene(void)
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 glBegin(GL_QUAD_STRIP);! ! ! ! ! !
 glVertex3f(-50.0f, -50.0f, 0.0f);! ! ! !
 glVertex3f(-50.0f, 50.0f, 0.0f);! !
 glVertex3f(0.0f, -50.0f, 0.0f);!
 glVertex3f(0.0f, 50.0f, 0.0f);!! ! !
 glVertex3f(50.0f, -50.0f, 0.0f);! !
 glVertex3f(50.0f, 50.0f, 0.0f);!!
!glEnd();

!glutSwapBuffers();
}

General Polygons
• The final OpenGL primitive is the

GL_POLYGON, which you can use to draw a
polygon having any number of sides.

• Eg a polygon consisting of five vertices.

• Polygons, like quads, must have all vertices
on the same plane.

6

void renderScene(void)
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 glBegin(GL_POLYGON);!! ! ! ! !
 glVertex3f(-50.0f, 50.0f, 0.0f);! ! ! !
 glVertex3f(20.0f, 50.0f, 0.0f);
 glVertex3f(50.0f, 30.0f, 0.0f);
 glVertex3f(50.0f, -50.0f, 0.0f);!
 glVertex3f(-50.0f, -50.0f, 0.0f);
!glEnd();

!glutSwapBuffers();
}

Polygon Construction Rules (1) Planar Rule

• Two important rules when
using many polygons to
construct a complex surface

(1) All polygons must be
planar. That is, all the vertices
of the polygon must lie in a
single plane. The polygon
cannot twist or bend in
space.

7

A good reason to use triangles. No triangle can ever
be twisted so that all three points do not line up in a
plane.

(2) Convex Rule

(2) A polygon’s edges must not
intersect, and the polygon must
be convex.

A polygon intersects itself if
any two of its lines cross.

Convex means that the
polygon cannot have any
indentions.

• These restrictions allow
OpenGL to use very fast
algorithms for rendering these
polygons

8

A useful test of a convex polygon
is to draw some lines through it. If
any given line enters and leaves
the polygon more than once, the
polygon is not convex.

Subdivision and Edges

• Even though OpenGL can draw only convex polygons,
there’s still a way to create a non-convex polygon: by
arranging two or more convex polygons together.

• E.G. a four-point star - obviously not convex and thus
violates OpenGL’s rules for simple polygon
construction.

• However, one can be composed of six separate
triangles, which are legal polygons.

9

10

!glBegin(GL_TRIANGLES);

 glVertex2f(-20.0f, 0.0f);
 glVertex2f(20.0f, 0.0f);
 glVertex2f(0.0f, 40.0f);

 glVertex2f(-20.0f,0.0f);
 glVertex2f(-60.0f,-20.0f);
 glVertex2f(-20.0f,-40.0f);

 glVertex2f(-20.0f,-40.0f);
 glVertex2f(0.0f, -80.0f);
 glVertex2f(20.0f, -40.0f);! !

 glVertex2f(20.0f, -40.0f);! !
 glVertex2f(60.0f, -20.0f);
 glVertex2f(20.0f, 0.0f);

 glVertex2f(-20.0f, 0.0f);
 glVertex2f(-20.0f,-40.0f);
 glVertex2f(20.0f, 0.0f);

 glVertex2f(-20.0f,-40.0f);
 glVertex2f(20.0f, -40.0f);
 glVertex2f(20.0f, 0.0f);
!
!glEnd();

• When the polygons are filled, you won’t be
able to see any edges and the figure will
seem to be a single shape onscreen.

• However, if you use glPolygonMode to
switch to an outline drawing, it is distracting
to see all those little triangles making up
some larger surface area.

• OpenGL provides a special flag called an
edge flag to address those distracting edges.

11

• By setting and clearing the edge flag as you
specify a list of vertices, you inform
OpenGL which line segments are
considered border lines (lines that go
around the border of your shape) and which
ones are not (internal lines that shouldn’t be
visible).

• The glEdgeFlag function takes a single
parameter that sets the edge flag to True or
False. When the function is set to True, any
vertices that follow mark the beginning of a
boundary line segment

12

 glBegin(GL_TRIANGLES);
 glEdgeFlag(GL_FALSE);
 glVertex2f(-20.0f, 0.0f);
 glEdgeFlag(GL_TRUE);
 glVertex2f(20.0f, 0.0f);
 glVertex2f(0.0f, 40.0f);

 glVertex2f(-20.0f,0.0f);
 glVertex2f(-60.0f,-20.0f);
 glEdgeFlag(GL_FALSE);
 glVertex2f(-20.0f,-40.0f);
 glEdgeFlag(GL_TRUE);

 glVertex2f(-20.0f,-40.0f);
 glVertex2f(0.0f, -80.0f);
 glEdgeFlag(GL_FALSE);
 glVertex2f(20.0f, -40.0f);! !
 glEdgeFlag(GL_TRUE);

 glVertex2f(20.0f, -40.0f);! !
 glVertex2f(60.0f, -20.0f);
 glEdgeFlag(GL_FALSE);
 glVertex2f(20.0f, 0.0f);
 glEdgeFlag(GL_TRUE);

 glEdgeFlag(GL_FALSE);
 glVertex2f(-20.0f, 0.0f);
 glVertex2f(-20.0f,-40.0f);
 glVertex2f(20.0f, 0.0f);

 glVertex2f(-20.0f,-40.0f);
 glVertex2f(20.0f, -40.0f);
 glVertex2f(20.0f, 0.0f);
 glEdgeFlag(GL_TRUE);
!glEnd();

