Quads, Quad Strips & Polygons

OpenGL




Learning Outcomes

e Have used Quadrilaterals, Quadrilateral strips and general purpose polygons.

e Understand the planar and convex rules for polygon construction

e Know how to turn off edges when rendering apparently convex polygons.




Other Primitives

e Triangles are the preferred primitive for object composition because most
OpenGL hardware specifically accelerates triangles, but they are not the only
primitives available.

e Some hardware provides for acceleration of other shapes as well, and
programmatically, using a general-purpose graphics primitive might be
simpler.

e These OpenGL primitives provide for rapid specification of:
e quadrilaterals
e quadrilateral strips

® general-purpose polygons




Quads

e |f you add one more side to
a triangle, you get a
quadrilateral, or a four-
sided figure.

e OpenGL’'s GL_QUADS
primitive draws a four-
sided polygon.

e This quad has a clockwise
winding.

e All four corners of the
quadrilateral must lie in a
plane (no bent quads).

void renderScene(void)

{

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

g1lBegin(GL_QUADS);
glVertex3f(-50.0f, 0.0f,
glVertex3f( 0.0f, 50.0f,
glVertex3f( 50.0f, 0.0f,
glVertex3f( 0.0f, -50.0f,
glEnd();

glutSwapBuffers();
I3

0.0f);
0.0f);
0.0f);
0.0f);




Quad Strip

e As you can for triangle strips, you can
specify a strip of connected quadrilaterals
with the GL_QUAD_STRIP primitive.

e Eg. a quad strip specified by six vertices.

¢ Note that these quad strips maintain a
clockwise winding.

Quad Example

void renderScene(void)

{
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glBegin(GL_QUAD_STRIP);
glVertex3f(-50.0f, -50.0f, 0.0f);
glVertex3f( -50.0f, 50.0f, 0.0f);
glVertex3f( 0.0f, -50.0f, 0.0f);
glVertex3f( 0.0f, 50.0f, 0.0f);
glVertex3f( 50.0f, -50.0f, 0.0f);
glVertex3f( 50.0f, 50.0f, 0.0f);

glEnd();

glutSwapBuffers();

}




General Polygons

e The final OpenGL primitive is the
GL_POLYGON, which you can use to draw a
polygon having any number of sides.

e Eg a polygon consisting of five vertices.

e Polygons, like quads, must have all vertices
on the same plane.

Quad Example

void renderScene(void)

{
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

g1lBegin(GL_POLYGON);
glVertex3f(-50.0f, 50.0f,
glVertex3f( 20.0f, 50.0f,
glVertex3f( 50.0f, 30.0f,
glVertex3f( 50.0f, -50.0f,
glVertex3f(-50.0f, -50.0f,
glEnd();

glutSwapBuffers();

}




Polygon Construction

e Two important rules when
using many polygons to
construct a complex surface

(1) All polygons must be
planar. That is, all the vertices
of the polygon must lie in a
single plane. The polygon
cannot twist or bend in

Space. Planar polygon Nonplanar polygon

A good reason to use triangles. No triangle can ever
be twisted so that all three points do not line up in a
plane.




(2) Convex Rule

(2) A polygon’s edges must not
iIntersect, and the polygon must
be convex.

A polygon intersects itself if
any two of its lines cross.

Valid polygons Invalid polygons
Convex means that the

polygon cannot have any
indentions. A useful test of a convex polygon
Is to draw some lines through it. If
any given line enters and leaves
the polygon more than once, the
polygon is not convex.

® These restrictions allow
OpenGL to use very fast
algorithms for rendering these
polygons




Subdivision and Edges

e Even though OpenGL can draw only convex polygons,
there’s still a way to create a non-convex polygon: by
arranging two or more convex polygons together.

e E.G. a four-point star - obviously not convex and thus
violates OpenGL’s rules for simple polygon
construction.

e However, one can be composed of six separate
triangles, which are legal polygons.




glBegin(GL_TRIANGLES);

glVertex2f(-20.0f, 0.0f);
glVertex2f(20.0f, 0.0f);
glVertex2f(0.0f, 40.0f); £ 0 Polygons Example
glVertex2f(-20.0f,0.0°f);

glWertex2f(-60.0f,-20.07);
glVertex2f(-20.0f,-40.07f);

glVertex2f(-20.0f,-40.07f);
glVertex2f(0.0f, -80.0f);
glVertex2f(20.0f, -40.0f);

glVertex2f(20.0f, -40.0f);
glWertex2f(60.0f, -20.0f);
glVertex2f(20.0f, 0.0f);

glVertex2f(-20.0f, 0.0f);
glVertex2f(-20.0f,-40.0f);
glVertex2f(20.0f, 0.0f);

glVertex2f(-20.0f,-40.07f);
glVertex2f(20.0f, -40.0f);
glVertex2f(20.0f, 0.0f);

glEnd();




Polygons Example

e \When the polygons are filled, you won’t be
able to see any edges and the figure will
seem to be a single shape onscreen.

e However, if you use glPolygonMode to
switch to an outline drawing, it is distracting

to see all those little triangles making up Polygons Example
some larger surface area.

e OpenGL provides a special flag called an
edge flag to address those distracting edges.




M O Polygons Example

g1Begin(GL_TRIANGLES);
glEdgeFlag(GL_FALSE);
gWertex2f(-20.0f, 0.0f);
glEdgeFlag(GL_TRUE);
glVertex2f(20.0f, 0.0f);
glWertex2f(0.0f, 40.0f);

glVertex2f(-20.0f,0.0f);
gWertex2f(-60.0f,-20.0f);
glEdgeFlag(GL_FALSE);
gWertex2f(-20.0f,-40.0f);
glEdgeFlag(GL_TRUE);

glVertex2f(-20.0f,-40.0f);
glVertex2f(0.0f, -80.0f);

_ _ 1EdgeFlag(GL_FALSE);
e By setting and clearing the edge flag as you SWe?-texz?(z@.@f, ~40.0f);

specify a list of vertices, you inform glEdgeFlag(GL_TRUE);
OpenGL which line segments are glVertex2f(20.0f, -40.0f);
considered border lines (lines that go g{\éggzgﬁgggﬁg&ss@@f)
around the border of your shape) and which glVertex2f(20.0F, 0.0f);

ones are not (internal lines that shouldn’t be glEdgeFlag(GL_TRUE);

visible). glEdgeFlag(GL_FALSE);

: - glVertex2f(-20.0f, 0.0f);
* The glEdgeFlag function takes a single gWertex2(-20.0F . -40.0F) ;

parameter that sets the edge flag to True or glVertex2f(20.0f, 0.0f);
False. When the function is set to True, any glVertex2f(-20.0f,-40.0f);
vertices that follow mark the beginning of a glVertex2f(20.0f, -40.0f);

boundarv line seament glVertex2f(20.0f, 0.0°T);
y 9 glEdgeFlag(GL_TRUE);

glEnd();




